[1]李浩良,潘剑南,苏全,等. 一例带电水冲洗触发的220 避雷器爆炸事故分析[J].湖南电力, 2021, 41(2): 87-90. [2]蒋兴良,任晓东,韩兴波,等.不同布置方式对交流绝缘子串人工污秽闪络特性的影响[J].电工技术学报, 2020, 35(4): 896-905. [3]马政,李彦哲,吴有龙,等. 高电导率盐碱雾条件下FQBG-25型染污绝缘子交流污闪特性[J].绝缘材料, 2020, 53(5): 90-96. [4]张志劲,李汛,乔新涵,等. 支柱绝缘子上下表面不均匀积污负极性直流闪络特性[J].高电压技术, 2020, 46(10): 3569-3575. [5]金海云,周慧敏,卫世超,等. 污秽超疏水硅橡胶表面的润湿闪络特性研究[J].中国电机工程学报, 2020, 40(17): 5690-5700. [6]Ren S,Wang S,Dong Z,et al. Dynamic behaviors and self-cleaning property of droplet on superhydrophobic coating in uniform DC electric field[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127056. [7]庄奥运. 基于气溶胶辅助化学气相沉积技术制备耐磨EP/PDMS超疏水涂层及其防覆冰性能研究[D]. 重庆:重庆大学,2018. [8]颜薪瞩. 甲基硅树脂超疏水涂层制备方法与凝露特性及防污闪性能研究[D]. 重庆:重庆大学, 2016. [9]金海云,周慧敏,卫世超,等. 超疏水硅橡胶表面的自清洁特性[J].绝缘材料, 2020, 53(11): 82-88. [10]Wang S, Li L, Zou Q, et al. Abrasion mechanisms of superhydrophobic coating surfaces wetted in Wenzel state[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657: 130585. [11]Wang S, Zou Q, Zhao X, et al. Predicting the DC pollution flashover voltage on the insulation surfaces with superhydrophobicity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646: 128987. [12]Liu Y, Kong L, Liu X, et al. Characteristics, secondary transformation, and health risk assessment of ambient volatile organic compounds (VOCs) in urban Beijing,China[J]. Atmospheric Pollution Research, 2021, 12(3): 33-46. [13]Thakkar R, Gajaweera S, Comer J. Organic contaminants and atmospheric nitrogen at the graphene-water interface: a simulation study[J]. Nanoscale Advances, 2022, 4(7): 1741-1757. [14]阿米拉, 耿柠波, 曹蓉, 等. 大气颗粒物中典型有机物的分析方法和污染特征研究进展[J]. 环境化学, 2021, 40(12): 3774-3786. [15]Salem A A,Abd-Rahman R,Rahiman W,et al. Pollution flashover under different contamination profiles on high voltage insulator: Numerical and experiment investigation[J]. IEEE Access, 2021, 9: 37800-37812. [16]蒋兴良,杨忠毅,韩兴波,等.硅橡胶复合绝缘子在不同可溶污秽成分下的闪络特性研究[J].中国电机工程学报,2018, 38(1): 320-329,370. [17]吕玉坤,王佳文,宋庆壮,等.水珠对复合绝缘子表面电场畸变特性的影响[J].电网技术,2021,45(3):1201-1207. [18]Chen J, Chen J, Li L, et al. Droplet rolling angle model of micro-nanostructure superhydrophobic coating surface[J]. The European Physical Journal E, 2021, 44: 1-11. [19]Rawal A, Sharma S, Kumar V, et al. Designing superhydrophobic disordered arrays of fibers with hierarchical roughness and low-surface-energy[J].Applied Surface Science,2016,389:469-476. [20]Xie Y, Xiong W, Kareem S, et al. Robust superamphiphobic coatings with gradient and hierarchical architecture and excellent anti-flashover performances[J].Nano Research,2022,15(8):7565-7576. |