[1] 董雪涛,冯长有,朱子民,等.新型电力系统仿真工具研究初探[J].电力系统自动化,2022,46(10):53-63. [2] 谢小荣,贺静波,毛航银,等.“双高”电力系统稳定性的新问题及分类探讨[J].中国电机工程学报,2021,41(2):461-475. [3] KOTSAMPOPOULOS P, LAGOS D, HATZIARGYRIOU N, et al. A benchmark system for hardware-in-the-loop testing of distributed energy resources[J]. IEEE Power and Energy Technology Systems Journal, 2018, 5(3): 94-103. [4] 李亚楼,张星,李勇杰,等.交直流混联大电网仿真技术现状及面临挑战[J].电力建设,2015,36(12):1-8. [5] ZHAO W S,YANG S B,WANG X, et al.A simulation configuration method for real-time simulation based on requirements analysis[J].IEEE Access, 2022,10:77781-77790. [6] 周孝信,陈树勇,鲁宗相,等.能源转型中我国新一代电力系统的技术特征[J].中国电机工程学报,2018,38(7):1893-1904,2205. [7] 李亚楼,穆清,安宁,等.直流电网模型和仿真的发展与挑战[J].电力系统自动化,2014,38(4):127-135. [8] 汤奕,王琦,邰伟,等.基于OPAL-RT和OPNET的电力信息物理系统实时仿真[J]. 电力系统自动化, 2016, 40(23): 15-21,92. [9] LI X,JIANG J N,HUANG A Q,et al.A SiC power MOSFET loss model suitable for high-frequency applications[J].IEEE Transactions on Industrial Electronics,2017,64(10):8268-8276. [10] CHRISTEN D, BIELA J. Analytical switching loss modeling based on datasheet parameters for mosfets in a half-bridge[J]. IEEE Transactions on Power Electronics,2019,34(4):3700-3710. [11] WANG J J, CHUNG H S H, LI R T H. Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 573-590. [12] 周宏扬,马国明,刘姝嫔,等.基于电–热多物理场耦合模型的直流GIL绝缘子表面电荷积聚及其对沿面电场影响的研究[J].中国电机工程学报,2017,37(4):1251-1259. [13] YANG X, YUAN Y, ZHANG X Q, et al. Shaping high-power IGBT switching transitions by active voltage control for reduced EMI generation[J]. IEEE Transactions on Industry Applications, 2015, 51(2): 1669-1677. [14] 贾英杰, 肖飞, 罗毅飞,等. 基于场路耦合的大功率IGBT多速率电热联合仿真方法[J]. 电工技术学报, 2020, 35(9): 1952-1961. [15] 穆清, 周孝信, 王祥旭,等. 面向实时仿真的小步长开关误差分析和参数设置[J]. 中国电机工程学报, 2013, 15(31): 120-129. [16] 苏杭,徐晋,汪可友,等.考虑变换器损耗特性的小步长实时仿真方法[J].中国电机工程学报,2021,41(5):1840-1851. [17] 朱建鑫, 胡海兵,陆道荣,等. 应用于级联 STATCOM 的高精度低成本全FPGA实时仿真模型研究[J]. 电工技术学报, 2019, 34(4): 777-785. [18] 舒德兀, 李琰, 张春朋,等. 基于幅值分布函数的换流器平均化模型及其应用[J]. 电力系统自动化, 2016, 40(15): 73-78. [19] 姜宽, 王慧芳, 林达,等. 面向逆变器型分布式电源的快速建模与仿真方法[J]. 电力系统自动化, 2017, 41(12): 13-19. [20] HUANG Y W, CHAPARIHA M, THERRIEN F, et al. A constant-parameter voltage-behind-reactance synchronous machine model based on shifted-frequency analysis[J]. IEEE Transactions on Energy Conversion, 2015, 30(2): 761-771. [21] FAN S T, DING H. Time domain transformation method for accelerating EMTP simulation of power system dynamics[J]. IEEE Transactions on Power Systems, 2012, 27(4): 1778-1787. [22] 陈鹏伟,刘奕泽,阮新波,等.电力电子化电力系统随机电磁暂态仿真算法[J].中国电机工程学报,2021,41(11):3829-3841. [23] 刘俊磊,王钢,李海锋,等.计及直流控制特性的直流系统等值模型及其谐波计算[J].电力系统自动化,2014,38(19):67-73. [24] LIU H K, XIE X R, HE J B, et al. Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4708-4720. [25] 陈鹏伟, 陶顺,杨洋,等. 电磁-机电暂态混合仿真接口交互信息限制性分析[J]. 电工电能新技术, 2016, 35(5): 1-7. [26] 王晨轩, 汪震. 含异步风力发电机的频率相关网络等值方法研究[J]. 分布式能源, 2019, 4(5): 35-41. [27] 穆清,李亚楼,周孝信,等.基于传输线分网的并行多速率电磁暂态仿真算法[J]. 电力系统自动化,2014,38(7):47-52. [28] 顾卓远, 汤涌, 刘文焯, 等. 双馈风力发电机组的电磁暂态-机电暂态混合仿真研究[J]. 电网技术, 2015, 39(3): 615-620. [29] 叶华, 安婷, 裴玮, 等. 含VSC-HVDC交直流系统多尺度暂态建模与仿真研究[J]. 中国电机工程学报, 2017, 37(7): 1897-1909. [30] MILTON M, BENIGNI A. Latency insertion method based real-time simulation of power electronic systems[J]. IEEE Transactions on Power Electronics, 2018, 33(8): 7166-7177. [31] OU K,RAO H, CAI Z,et al. MMC-HVDC simulation and testing based on real-time digital simulator and physical control system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2:1109-1116. [32] 陈来军, 陈颖, 许寅, 等. 基于GPU的电磁暂态仿真可行性研究[J]. 电力系统保护与控制, 2013, 41(2): 107-112. [33] MIRZAHOSSEINI R, IRAVANI R, ZHANG Y.An FPGA-based digital real-time simulator for hardware-in-the-loop testing of traveling-wave relays[J]. IEEE Transactions on Power Delivery, 2020, 35(6):2621-2629. [34] 朱建鑫, 滕国栋, 秦阳, 等. 基于多 FPGA 的电力电子实时仿真系统[J]. 电力系统自动化, 2017, 41(9): 137-143. [35] BASTOS R F, FUZATO G H, AGUIAR C R, et al. Model, design and implementation of a low‐cost HIL for power converter and microgrid emulation using DSP[J]. IET Power Electronics, 2019, 12(14): 3833-3841. [36] GEBREEL A A G M. Simulation and implementation of two-level and three-level inverters by MATLAB and RT-LAB[D]. Columbus City:The Ohio State University, 2011. [37] OMAR FARUQUE M D, STRASSER T, LAUSS G, et al. Real-time simulation technologies for power systems design, testing, and analysis[J]. IEEE Power and Energy Technology Systems Journal, 2015, 2(2): 63-73. [38] LAUSS G, STRUNZ K. Accurate and stable hardware-in-the-loop(HIL)real-time simulation of integrated power electronics and power systems[J]. IEEE Transactions on Power Electronics, 2020, 36(9): 10920-10932. [39] BERGERO F, KOFMAN E. PowerDEVS: a tool for hybrid system modeling and real-time simulation[J]. Simulation,2011, 87(1/2): 113-132. [40] EDRINGTON C S, STEURER M, LANGSTON J,et al. Role of power hardware in the loop in modeling and simulation for experimentation in power and energy systems[J]. Proceedings of the IEEE, 2015, 103(12):2401-2409. [41] 王涛, 张东华, 贺智轶, 等. 电动汽车充电桩的控制系统研究与设计[J]. 湖北电力, 2011, 35(1): 11-12. [42] GUO F, HERRERA L, MURAWSKI R, et al. Comprehensive real-time simulation of the smart grid[J]. IEEE Transactions on Industry Applications, 2013, 49(2): 899-908. |