湖南电力 ›› 2024, Vol. 44 ›› Issue (6): 134-140.doi: 10.3969/j.issn.1008-0198.2024.06.019

• 故障与分析 • 上一篇    下一篇

基于WinCLIP+的电力设备零样本和小样本异常特征提取方法

黄帅, 陈嘉敏, 李于宝   

  1. 杭州市电力设计院有限公司,浙江 杭州 310000
  • 收稿日期:2024-10-14 修回日期:2024-11-04 出版日期:2024-12-25 发布日期:2024-12-25
  • 通信作者: 陈嘉敏(1970),本科,高级工程师,主要从事电力工程咨询、新能源系统开发、数字化信息化集成工作。
  • 作者简介:黄帅(1991),硕士,工程师,主要研究方向为智能电网、能源互联网关键技术。
  • 基金资助:
    国网浙江省电力有限公司科技项目(5211HZ240008); 浙江大有集团有限公司科技项目(DY2022-04)

Zero-Sample and Small-Sample Anomaly Feature Ex‍traction Method for Power Equipment Based on Win‍CLIP+

HUANG Shuai, CHEN Jiamin, LI Yubao   

  1. Hangzhou Electric Power Design Institute Co., Ltd., Hangzhou 310000, China
  • Received:2024-10-14 Revised:2024-11-04 Online:2024-12-25 Published:2024-12-25

摘要: 针对电力设备智能设计中缺乏大量数据导致现有特征提取方法在准确性和鲁棒性方面的不足,提出一种基于小样本学习的窗口化 WinCLIP+,以改善零样本和小样本条件下的特征提取性能。该方法结合零样本学习与小样本学习的优势,利用预训练的CLIP模型进行多尺度特征提取,并引入少量设计参考样本,设计参考关联模块和多尺度特征融合机制,增强对不同类型和规模特征的提取能力。此外,WinCLIP+通过整合语言引导的预测与视觉参考信息,进一步提升了特征提取的鲁棒性。为验证该方法的有效性,采用异常检测任务进行评估。实验结果表明:WinCLIP+在零样本条件下的检测准确率达到84%,在小样本条件下达到91%。这表明所提方法在电力设备智能设计中的特征提取具有显著的有效性和鲁棒性。

关键词: 小样本学习, 异常检测, 图像分割, 电力缺陷, 特征提取

Abstract: To address the issue of insufficient accuracy and robustness in existing feature extraction methods due to the lack of large datasets in the intelligent design of power equipment, a WinCLIP+ method based on small-sample learning is proposed to enhance feature extraction performance under zero-sample and small-sample conditions. This method combines the advantages of both zero-sample and small-sample learning,utilizes a pre-trained CLIP model for multi-scale feature extraction,introducesa small number of design reference samples, and incorporatea reference correlation module alongside a multi-scale feature fusion mechanismto enhance the extraction capability of features of different types and scales. Furthermore, WinCLIP+ further enhances the robustness of feature extraction by integrating linguistically guided predictions and visual reference information. To verify the effectiveness of this approach,an anomaly detection task is conducted. The experimental results indicate that WinCLIP+ achieves a detection accuracy of 84% under zero-sample conditions and 91% under small-sample conditions, demonstrating its significant effectiveness and robustness for feature extraction in the intelligent design of power equipment.

Key words: small-sample learning, anomaly detection, image segmentation, power equipment defects, feature extraction

中图分类号: