[1] KHORASANI E S.Artificial intelligence:Structures and strategies for complex problem solving[J]. Scalable Computing:Practice and Experience,2008,9(3). [2] GALAGEDARAGE DON M,KHAN F.Process fault prognosis using hidden Markov model-Bayesian networks hybrid model[J]. Industrial & Engineering Chemistry Research,2019,58(27):12041-12053. [3] DU X W,XU G N,LI Z J,et al.Remaining useful life prediction of Lithium-ion batteries of stratospheric airship by model-based method[J]. Microelectronics Reliability,2019,100:113400. [4] CHU A,ALLAM A,CORDOBA ARENAS A,et al.Stochastic capacity loss and remaining useful life models for lithium-ion batteries in plug-in hybrid electric vehicles[J]. Journal of Power Sources,2020,478:228991. [5] 柯赟,宋恩哲,姚崇,等. 船舶柴油机故障预测与健康管理技术综述[J]. 哈尔滨工程大学学报,2020,41(1):125-131. [6] ESKANDARNIA E,AL-AMMAL H,KSANTINI R,et al.Deep learning techniques for smart meter data analytics:a review[J]. SN Computer Science,2022,3(3):243. [7] 吴达雷,梁树华,陈长基,等. 基于多维赋权威布尔分布的智能电表可靠性评价方法[J]. 西南大学学报(自然科学版),2024,46(4):164-173. [8] HUANG M T,ZHANG Q B.Prediction of remaining useful life of lithium-ion battery based on UKF[C]//2020 Chinese Automation Congress(CAC). Shanghai,China. IEEE,2020:4502-4506. [9] TSCHORA L,PIERRE E,PLANTEVIT M,et al.Electricity price forecasting on the day-ahead market using machine learning[J]. Applied Energy,2022,313:118752. [10] RAWAL B,AGARWAL R.Improving accuracy of classification based on C4.5 decision tree algorithm using big data analytics[M]//Computational Intelligence in Data Mining.Singapore:Springer Singapore,2018:203-211. [11] 卢峭峰,叶魏涛,杨遂军,等. 基于D-S证据理论的多传感器燃爆判别方法[J]. 传感技术学报,2025,38(1):122-127. [12] 张志勇,王宇翔,黄彩霞,等. 融合灰色预测和卡尔曼滤波的车辆侧向碰撞预警[J]. 机械工程学报,2024,60(20):240-250. [13] XIONG R,LI L L,LI Z R,et al.An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application[J]. Applied Energy,2018,219:264-275. [14] 张吉宣,贾建芳,曾建潮. 电动汽车供电系统锂电池剩余寿命预测[J]. 电子测量与仪器学报,2018,32(3):60-66. [15] 刘梓强,金涛,刘宇龙,等. 基于张量重构融合诊断的电动汽车直流充电桩开路故障诊断方法[J]. 中国电机工程学报,2023,43(5):1831-1843. [16] 加鹤萍,郭宇辰,马乾鑫,等. 基于机器学习方法的现货电价预测研究综述[J]. 电力建设,2025,46(2):160-179. [17] ZHANG Y,YAN J.Crossformer:Transformer utilizing cross-dimension dependency for multivariate time series forecasting[C]//The eleventh international conference on learning representations. 2023. [18] LIU M,ZENG A,CHEN M,et al.Scinet:Time series modeling and forecasting with sample convolution and interaction[J]. Advances in Neural Information Processing Systems,2022,35:5816-5828. [19] 于东民,杨超,蒋林洳,等. 电动汽车充电安全防护研究综述[J]. 中国电机工程学报,2022,42(6):2145-2164. [20] 马丽叶,王海锋,卢志刚,等. 计及相关性影响的增强台风灾害下配电网韧性灵活性资源规划[J]. 电力系统自动化,2022,46(7):60-68. |