湖南电力 ›› 2025, Vol. 45 ›› Issue (6): 50-55.doi: 10.3969/j.issn.1008-0198.2025.06.007

• 专家专栏:电力防灾减灾 • 上一篇    下一篇

磷酸铁锂电池热失控产热特性研究

陈浩, 陈川, 杨凯, 魏斌, 张明杰   

  1. 中国电力科学研究院有限公司储能研究所,北京 100192
  • 收稿日期:2025-09-01 修回日期:2025-10-09 出版日期:2025-12-25 发布日期:2026-01-13
  • 通信作者: 陈浩(1996),男,工程师,从事储能系统绝缘安全及致灾机制研究工作。
  • 基金资助:
    国家电网有限公司科技项目(5200-202355755A-3-4-SY)

Research on Heat Generation Characteristics of Thermal Runaway in Lithium Iron Phosphate Batteries

CHEN Hao, CHEN Chuan, YANG Kai, WEI Bin, ZHANG Mingjie   

  1. Energy Storage Department, China Electric Power Research Institute, Beijing 100192, China
  • Received:2025-09-01 Revised:2025-10-09 Online:2025-12-25 Published:2026-01-13

摘要: 磷酸铁锂(LiFePO4,LFP)电池的热失控产热特征,直接关系到其应用过程中的安全性能。以60 A·h LFP电池为研究对象,对比不同测试环境下的产热过程,详细解析正极、隔膜与负极的燃烧演变规律,系统揭示电池热失控机制,并获取绝热、室温及纯氧环境下的热失控及燃烧总产热量。结果表明,LFP电池热失控可划分为加热、自产热(起始温度105 ℃)、内短路(起始温度136 ℃)及热失控(触发温度200 ℃)4个阶段。室温环境中,负极燃烧响应最快且热释放峰值最高;绝热、室温及纯氧环境下电池热失控总放热量分别为430.26 kJ、1 035.84 kJ和20 135.13 kJ。研究结果可为储能电站热失控抑制策略制定和消防防护设计提供支撑。

关键词: 磷酸铁锂电池, 热失控机制, 测试环境, 产热, 储能安全

Abstract: The heat generation characteristics of LiFePO4(LFP) batteries during thermal runaway(TR) are directly tied to their safety performance in practical applications. Using 60A·h LFP batteries as the research subject, this study focuses on comparing heat generation processes under different test environments, detailing combustion evolution laws of the anode, separator, and cathode, systematically revealing the TR mechanism of the battery, and obtaining the total heat released from TR and combustion under adiabatic, room temperature, and pure oxygen conditions. Results indicate that LFP battery TR can be divided into four stages: heating, self-heating (initial temperature 105 ℃), internal short circuit(initial temperature 136 ℃), and TR (trigger temperature 200 ℃). In a room temperature environment, the anode responds fastest to combustion and has the highest heat release peak. The total heat release of battery TR under the three conditions reaches 430.26 kJ, 1 035.84 kJ, and 20 135.13 kJ, respectively. The findings can provide valuable support for formulating TR suppression strategies in energy storage stations and for designing fire protection measures.

Key words: lithium-iron phosphate(LiFePO4, LFP) batteries, thermal runaway(TR) mechanism, test environments, heat generation, energy storage safety

中图分类号: