湖南电力 ›› 2022, Vol. 42 ›› Issue (5): 16-21.doi: 10.3969/j.issn.1008-0198.2022.05.003

• 特别推荐 • 上一篇    下一篇

垂直布置间接空冷塔防大风研究

陈云1, 王利民2   

  1. 1.上海电气电站工程公司,上海 201199;
    2.西安交通大学能源与动力工程学院,陕西 西安 710100
  • 收稿日期:2022-08-03 修回日期:2022-08-12 出版日期:2022-10-25 发布日期:2022-11-16
  • 作者简介:陈云(1986),男,湖北人,硕士,主要从事电厂中水工消防方面的工程技术管理。
    王利民(1988),男,山西人,副教授,通信作者,从事大型电站空冷系统的相关研究。
  • 基金资助:
    国家自然科学基金(51806171)

Study on Wind-Proof of Indirect Air Cooling Tower with Vertical Layout

CHEN Yun1, WANG Limin2   

  1. 1. Shanghai Electric Power Generation Engineering Co., Shanghai 201199, China;
    2. School of Energy and Power Engineering, Xi′an Jiaotong University, Xi′an 710100, China
  • Received:2022-08-03 Revised:2022-08-12 Online:2022-10-25 Published:2022-11-16

摘要: 空冷系统受外界环境变化影响大,当风速增加或气温升高时,空冷散热器换热能力下降,导致机组背压升高。为了机组安全运行,需要采取一定的措施降低大风对空冷系统的影响。模拟了在高风速下垂直布置间接空冷塔、塔外加设挡风墙、调节百叶窗及塔内加设十字墙四种模型的流场分布及其散热能力。对流场分布及散热能力数据分析比较可知,间接空冷塔散热能力强弱依次为:塔外加设挡风墙、调节百叶窗、塔内加设十字墙、没有任何防风措施。

关键词: 空冷系统, 散热能力, 挡风墙, 十字墙, 百叶窗

Abstract: The air cooling system is greatly affected by the change of external climate. When the wind speed increases or the temperature rises, the heat transfer capacity of the air cooling radiator decreases, thereby leading to the rise of the unit's back pressure. In order to make sure the unit operating safely, some measures should be taken to reduce the influence of high wind speed. In this paper, the flow field distribution and heat dissipation capacity of four models are simulated under high wind speed. According to the analysis and comparison of flow field distribution and heat dissipation capacity data, the heat dissipation capacity of indirect air-cooling tower is as follows: wind-proof wall outside the tower, adjusting shutter, cross wall inside the tower, without any wind-proof measures.

Key words: air cooling system, heat dissipation capacity, wind break wall, cross wall, shutter

中图分类号: