湖南电力 ›› 2024, Vol. 44 ›› Issue (6): 38-45.doi: 10.3969/j.issn.1008-0198.2024.06.006

• 研究与试验 • 上一篇    下一篇

改进型人工水母搜索算法的永磁同步电机在线参数辨识

文定都1, 阳意平1, 罗朝旭1, 程谆2   

  1. 1.湖南工业大学电气与信息工程学院,湖南 株洲 412007;
    2.湖南铁道职业技术学院,湖南 株洲 412001
  • 收稿日期:2024-07-04 修回日期:2024-07-27 出版日期:2024-12-25 发布日期:2024-12-25
  • 通信作者: 程谆(1988),女,湖南宁乡人,硕士,讲师,主要研究方向为现代电力电子技术与系统。
  • 作者简介:文定都(1969),男,湖南道县人,教授,主要研究方向为电机控制技术。阳意平(2000),男,湖南邵阳人,硕士,主要研究方向为电力电子与新能源发电技术。罗朝旭(1987),男,湖南衡阳人,副教授,主要研究方向为微电网逆变器控制。
  • 基金资助:
    国家自然科学基金(52207205)

Online Parameter Identification Based on Improved Ar‍tificial Jellyfish Search Algorithm for Permanent Mag‍net Synchronous Motor

WEN Dingdu1, YANG Yiping1, LUO Zhaoxu1, CHENG Zhun2   

  1. 1. College of Electrical and Information Engineering, Hunan University of Technology,Zhuzhou 412007, China;
    2. Hunan Railway Professional Technology College, Zhuzhou 412001, China
  • Received:2024-07-04 Revised:2024-07-27 Online:2024-12-25 Published:2024-12-25

摘要: 针对永磁同步电机人工水母搜索算法参数辨识精度低、同时辨识多参数速度慢、易陷入局部最优等缺点,提出一种改进型人工水母搜索算法。首先设计Tent混沌映射和反向学习策略,增强了水母群靠近最优位置的能力。其次,设计平衡算法非线性递减时间控制函数的洋流运动与水母群内部运动。最后,为了克服人工水母搜索算法易陷入局部最优导致精度下降的问题,设计高斯变异帮助水母搜索算法跳出局部最优。实验结果表明,改进型人工水母搜索算法对永磁同步电机参数辨识具有更高的精度、更快的收敛速度,辨识精度能达到99.15%。

关键词: 永磁同步电机, 参数辨识, 人工水母搜索算法, 反向学习策略, 高斯变异

Abstract: To address the issues of the artificial jellyfish search (JS) algorithm for permanent magnet synchronous motor (PMSM), such as low parameter identification accuracy, slow multi-parameter identification, and to falling into local optimum easily, an improved artificial Jellyfish search algorithm is proposed. Firstly, Tent map and opposition-based learning strategy are designed to enhance the ability of jellyfish groups to approach optimal positions. Secondly, The jellyfish swarm motion and the ocean current motion of nonlinear decreasing time control function and bance algorithm are designed. Finally, to overcome the problem that the JS algorithm is prone to fall into local optimum leading accuracy degradation, Gaussian mutation is designed to help JS algorithm jump out of local optimum. The experimental results show the proposed algorithm has higher accuracy and faster convergence speed for PMSM parameter identification, and the identification accuracy can reach 99.15%.

Key words: permanent magnet synchronous motor, parameter identification, artificial jellyfish search algorithm, opposition-based learning, Gauss mutation

中图分类号: