[1] 庞传军,张波,余建明.基于LSTM循环神经网络的短期电力负荷预测[J]. 电力工程技术,2021,40(1):175-180,94. [2] 程明,翟金星,马骏,等.基于迁移学习的CNN-GRU短期电力负荷预测方法[J].武汉大学学报(工学版),2024,57(6):812-820. [3] HU X Y,LI B J,SHI J,et al.A novel forecasting method for short-term load based on TCN-GRU model[C]//2021 IEEE International Conference on Energy Internet(ICEI). Southampton,United Kingdom.IEEE,2021:79-83. [4] ZHENG J X,CHEN X Y,YU K,et al. Short-term power load forecasting of residential community based on GRU neural network[C]//2018 International Conference on Power System Technology(POWERCON). Guangzhou,China. IEEE,2018:4862-4868. [5] 赵兵,王增平,纪维佳,等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术,2019,43(12):4370-4376. [6] 任爽,杨凯,商继财,等. 基于CNN-BiGRU-Attention的短期电力负荷预测[J]. 电气工程学报,2024,19(1):344-350. [7] 徐岩,向益锋,马天祥.基于粒子群算法优化参数的VMD-GRU短期电力负荷预测模型[J]. 华北电力大学学报(自然科学版),2023,50(1):38-47. [8] 吴永洪,张智斌. 基于贝叶斯优化的CNN-GRU短期电力负荷预测[J]. 现代电子技术,2023,46(20):125-129. [9] 谢文龙,张莲,王士彬,等. 基于变分模态分解-排列熵-改进鹈鹕优化算法的长短期记忆网络的短期负荷预测[J]. 湖南电力,2023,43(6):82-92. [10] 陈星曲. 考虑电动汽车时空分布的负荷预测及充放电优化调度[D].沈阳:沈阳工程学院,2023. [11] SOWMYA R,PREMKUMAR M,JANGIR P.Newton-Raphson-based optimizer:A new population-based metaheuristic algorithm for continuous optimization problems[J]. Engineering Applications of Artificial Intelligence,2024,128:107532. [12] BAZARAA M S,SHERALI H D,SHETTY C M.Nonlinear programming:theory and algorithms[M].New York:Wiley Publishing,2006. [13] AHMADIANFAR I,BOZORG-HADDAD O,CHU X F.Gradient-based optimizer:A new metaheuristic optimization algorithm[J].Information Sciences,2020,540:131-159. [14] GUO H T,PAN L,WANG J,et al.Short-term wind power prediction method based on TCN-GRU combined model[C]//2021 IEEE Sustainable Power and Energy Conference(iSPEC). Nanjing,China.IEEE,2021:3764-3769. [15] LI L,LI Y J,MAO R Z,et al.Remaining useful life prediction for lithium-ion batteries with a hybrid model based on TCN-GRU-DNN and dual attention mechanism[J].IEEE Transactions on Transportation Electrification,2023,9(3):4726-4740. [16] ZOU Z,WANG J,E N,et al. Short-term power load forecasting:an integrated approach utilizing variational mode decomposition and TCN-BiGRU[J]. Energies,2023,16(18):6625. [17] GAO X,LI X B,ZHAO B,et al.Short-term electricity load forecasting model based on EMD-GRU with feature selection[J].Energies,2019,12(6):1140. [18] YI S Y,LIU H C,CHEN T,et al.A deep LSTM-CNN based on self-attention mechanism with input data reduction for short-term load forecasting[J].IET Generation,Transmission & Distribution,2023,17(7):1538-1552. [19] 王谦,高海波,左文.基于概率稀疏自注意力的船舶短期电力负荷预测[J].大连海事大学学报,2024,50(1):134-142. [20] 任建吉,位慧慧,邹卓霖,等. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制,2022,50(8):108-116. |