湖南电力 ›› 2024, Vol. 44 ›› Issue (6): 120-127.doi: 10.3969/j.issn.1008-0198.2024.06.017

• 经验与探讨 • 上一篇    下一篇

基于牛顿-拉弗森优化算法与注意力机制优化TCN-GRU的短期电力负荷预测

于惠钧1, 夏梦1, 陈刚1, 谭福元2, 徐银凤2   

  1. 1.湖南工业大学电气与信息工程学院,湖南 株洲 412007;
    2.国网湖南省电力有限公司株洲供电分公司,湖南 株洲 412000
  • 收稿日期:2024-07-19 出版日期:2024-12-25 发布日期:2024-12-25
  • 通信作者: 夏梦(2001),男,硕士,研究方向为电力系统负荷预测。
  • 作者简介:于惠钧(1975),男,教授,研究方向为电气分析与仿真、系统保护与自动化技术。
  • 基金资助:
    国家重点研发计划(2022YFE0105200); 国网湖南省电力有限公司株洲供电分公司(SGHNZZ00DKWT2400646)

Short-Term Power Load Fore‍casting Based on Newton-Raphson-Based Opti‍mizer and Attention Mechanism Optimized TCN-GRU

YU Huijun1, XIA Meng1, CHEN Gang1, TAN Fuyuan2, XU Yinfeng2   

  1. 1. School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China;
    2. State Grid Zhuzhou Power Supply Company, Zhuzhou 412000, China
  • Received:2024-07-19 Online:2024-12-25 Published:2024-12-25

摘要: 为了提升短期电力负荷预测的准确率和效率,将时间卷积网络(temporal convolutional network,TCN)、门控循环单元(gated recurrent unit,GRU)模型、牛顿-拉弗森优化算法(Newton-Raphson-based optimizer,NRBO)和注意力机制(attention mechanism,Attention)结合,提出一种NRBO-TCN-GRU-Attention的负荷预测模型。在该模型中,利用NRBO算法来优化超参数,TCN模块从负荷数据中提取特征,并将提取到的特征输入GRU模块中捕获在负荷序列中的长期依赖关系。接着,利用注意力机制强化重要特征。最后通过全连接层输出预测结果。试验结果表明,所提模型在两天及一周测试集上的决定系数、平均绝对误差、平均绝对百分比误差、均方根误差四项指标均优于其他对比模型,验证了所提模型的优越性和适用性。

关键词: 短期电力负荷预测, 时间卷积网络, 门控循环单元, 牛顿-拉弗森优化算法, 注意力机制

Abstract: In order to improve the accuracy and efficiency of short-term power load forecasting, a load forecasting model named NRBO-TCN-GRU-Attention is proposed by combining the temporal convolutional network (TCN), gated recurrent unit (GRU) model, Newton-Raphson-based optimizer (NRBO) and the attention mechanism (attention). In this model, the NRBO is utilized to optimize the hyper-parameters. The TCN module extracts features from the load data and inputs the extracted features into the GRU module to capture the long-term dependencies in the load sequence. Next, the attention mechanism is utilized to reinforce the important features. Finally, the prediction results are output through the fully connected layer. The experimental results show that the proposed model outperforms other comparative models in four metrics on the two-day and one-week test sets, namely, coefficient of determination, meanabsolute error, meanabsolute percentage error and root-mean-square error, which validates the superiority and applicability of the proposed model.

Key words: short-term power load forecasting, temporal convolutional network (TCN), gated recurrent unit (GRU), Newton-Raphson-based optimizer (NRBO), attention mechanism

中图分类号: