湖南电力 ›› 2025, Vol. 45 ›› Issue (3): 122-128.doi: 10.3969/j.issn.1008-0198.2025.03.017

• 电力人工智能与数字化 • 上一篇    下一篇

基于融合拉普拉斯残差图像处理的输电线路巡检单目测距技术

李勃铖1,2, 杨昊彦1,2, 刘钢1,2, 郭昊1,2, 刘兰兰1,2, 李赛3, 席燕辉3   

  1. 1.国网湖南省电力有限公司超高压输电公司,湖南 长沙 410004;
    2.带电作业及智能巡检技术国家电网公司实验室(培育),湖南 长沙 410004;
    3.长沙理工大学电气与信息工程学院,湖南 长沙 410114
  • 收稿日期:2025-03-10 修回日期:2025-04-15 发布日期:2025-07-02
  • 作者简介:李勃铖(1996),男,工程师,主要从事输变电工程电磁环境、输电线路智能巡检方面的研究工作。杨昊彦(1995),女,工程师,主要从输电线路智能巡检方面的研究工作。席燕辉(1979),女,教授,主要从事深度学习方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(52277078); 国网湖南省电力有限公司科技项目(5216AJ22000P); 湖南省自然科学基金项目(2022JJ30609,2021JJ30186)

Transmission Line Inspection Monocular Ranging Technology Based on Fused Laplace Residual Image Processing

Li Bocheng1,2, YANG Haoyan1, LiU Gang1,2, GUO Hao1,2, LiU Lanlan1,2, Li Sai3, Xi Yanhui3   

  1. 1. State Grid Hunan Extra High Voltage Transmission Company, Changsha 410004, China;
    2. Live Working and intelligent inspection Technology of State Grid Corporation of China Laboratory (incubation), Changsha 410004, China;
    3. School of Electrical and information Engineering, Changsha University of Science and Technology,Changsha 410114, China
  • Received:2025-03-10 Revised:2025-04-15 Published:2025-07-02

摘要: 在对超、特高压输电线路开展无人机巡检时,无人机能靠近输电线路,但距离过近会增加飞行干扰甚至发生碰撞,因此准确获取无人机与输电线之间的距离至关重要。针对这一问题,提出融合拉普拉斯残差的深度估计网络LapNet(Laplace net),以U-Net作为网络的基础架构,构建多尺度特征金字塔,提出LUB(Laplace U-Block)模块,替换U-Net的普通卷积层;在LUB模块中引入拉普拉斯金字塔残差结构,增加网络深度的同时保留深度特征中的高频信息,从而引导重建高质量的深度图像,实现单目距离的精确测量。实际测试结果表明,利用无人机单目镜头开展距离检测的平均误差为4.786%,最大误差为8.36%,能够实现无人机镜头与输电线路之间距离的精确测量。

关键词: 单目视觉, 深度估计, 拉普拉斯金字塔, LapNet, 无人机巡检

Abstract: During UAV inspections on ultra-and extra-high-voltage transmission lines, the UAV can approach the lines to capture detailed information. However, too close distance between UAV and transmission lines increases the risk of electromagnetic interference or even collisions. Therefore, it is crucial to accurately obtain the distance between the UAV and the transmission lines. In order to solve this problem, a depth estimation network LapNet(Laplace Net) fused with Laplace residuals is proposed, and U-Net is used as the network infrastructure to construct a multi-scale feature pyramid. A LUB (Laplace U-Block) module is proposed to replace the ordinary convolutional layer of U-Net, and the Laplace pyramid residual structure is introduced into the LUB module to increase the network depth while retaining the high-frequency information in the depth features. This leads to the reconstruction of high-quality depth images for accurate measurement of monocular distances. According to the actual test, the average error of distance detection using UAV monocular lens is 4.786%, and the maximum error is 8.36%, which can realize the accurate measurement of the distance between UAV lens and line.

Key words: monocular vision, depth estimation, pyramid of Laplace, Laplace Net, UAV inspection

中图分类号: