湖南电力 ›› 2025, Vol. 45 ›› Issue (6): 140-146.doi: 10.3969/j.issn.1008-0198.2025.06.019

• 配电网与用能技术 • 上一篇    下一篇

基于多维特征输入的改进Transformer网络配电网雷击浪涌电流辨识方法

严帆1, 郑鹏辉1, 游金梁2, 任奇2, 任磊2   

  1. 1.长沙理工大学电气与信息工程学院,湖南 长沙 410114;
    2.国网湖南省电力有限公司电力科学研究院,湖南 长沙 410208
  • 收稿日期:2025-07-18 修回日期:2025-10-11 出版日期:2025-12-25 发布日期:2026-01-13
  • 作者简介:严帆(2001),男,硕士研究生,研究方向为电力电子化配电网故障挖掘。
  • 基金资助:
    国网湖南省电力有限公司科技项目(5216A524001Y)

Method for Lightning Surge Current Identification in Distribution Networks Based on Improved Transformer Network with Multi-Dimensional Feature Inputs

YAN Fan1, ZHENG Penghui1, YOU Jinliang2, REN Qi2, REN Lei2   

  1. 1. School of Electrical and Information Engineering, Changsha University of Science and Technology,Changsha 410114, China;
    2. State Grid Hunan Electric Power Company Limited Research Institute, Changsha 410208, China
  • Received:2025-07-18 Revised:2025-10-11 Online:2025-12-25 Published:2026-01-13

摘要: 针对配电网雷击故障辨识中传统信号处理方法无法有效捕捉雷击浪涌信号复杂特征的问题,提出基于多维特征输入的改进Transformer网络的配电网雷击浪涌电流辨识方法。利用Transformer网络的自注意力机制,从多维度特征中提取复杂的依赖关系和模式,同时添加模型分类模块对雷击浪涌电流进行分类,电流辨识准确率得到显著提高。通过Simulink平台搭建仿真模型对所提算法进行验证,仿真结果表明,所提方法对雷击浪涌电流的识别准确率达到99.12%,验证了方法的有效性。

关键词: 10 kV配电网, 雷击浪涌电流辨识, 多维特征提取, Transformer模型

Abstract: Traditional signal processing methods often fail to effectively capture the complex nonlinear characteristics of lightning surge current signals in distribution networks lightning fault identification. To overcome this limitation, a method for lightning surge current identification in distribution networks based on an improved Transformer network with multi-dimensional feature inputs is proposed. Leveraging the self-attention mechanism of the Transformer network, intricate dependencies and patterns are extracted from multi-dimensional features, and a model classification module is incorporated to accurately classify lightning surge currents, significantly enhancing identification accuracy. The simulation model is built on the Simulink platform to validate the proposed algorithm. Experimental results demonstrate that the proposed method achieves an identification accuracy of 99.12% in classifying lightning surge currents, verifying the effectiveness of the approach.

Key words: 10 kV distribution network, lightning surge current identification, multi-dimensional feature extraction, Transformer model

中图分类号: