湖南电力 ›› 2022, Vol. 42 ›› Issue (1): 32-37.doi: 10.3969/j.issn.1008-0198.2022.01.006

• 研究与试验 • 上一篇    下一篇

基于BiLSTM的电压暂降原因辨识方法研究

苏婷婷1, 彭贺翔1, 王灿2, 李波1, 廖凯1, 刘世峰3   

  1. 1.西南交通大学,四川 成都 611756;
    2.国网湖南省电力有限公司电力科学研究院,湖南 长沙 410007;
    3.湖南大道电气设备有限公司,湖南 岳阳 414022
  • 收稿日期:2021-09-13 发布日期:2025-08-05
  • 作者简介:苏婷婷(1996),女,硕士,主要研究方向为电力系统及其自动化。
  • 基金资助:
    国网湖南省电力有限公司科技项目(5216A520000Q)

Research on Identification Method of Voltage Sag Cause Based on BiLSTM

SU Tingting1, PENG Hexiang1, WANG Can2, LI Bo1, LIAO Kai1, LIU Shifeng3   

  1. 1. Southwest Jiaotong University, Chengdu 611756, China;
    2. State Grid Hunan Electric Power Company Limited Research Institute, Changsha 410007, China;
    3. Hunan Dadao Electrical Equipment Limited Company, Yueyang 414022, China
  • Received:2021-09-13 Published:2025-08-05

摘要: 电压暂降是配电网中常见的电能质量问题之一,准确辨识电压暂降原因对制定有效的电压暂降综合防治方案、实现电网—用户责任划分等具有重要意义。提出一种基于双向长短期记忆神经网络(Bidirectional Long Short Term Memory,BiLSTM)的电压暂降原因辨识方法。首先,提取电压暂降时域特征和S变换能量熵,构建电压暂降原因辨识综合特征指标;其次,建立适用于电压暂降分类的BiLSTM网络,实现电压暂降原因的辨识;最后,设置多分类问题的评估指标,通过仿真对所提辨识方法的有效性进行验证。结果表明,所提方法能辨识5种电压暂降扰动源,且具有较高的准确性。

关键词: 电压暂降, 暂降原因辨识, S变换, BiLSTM

Abstract: Voltage sag is one of the most common power quality problems in distribution network. Accurately identifying the causes of voltage sag is of great significance to formulate comprehensive prevention and control scheme of voltage sag and division of power grid user responsibility. A method for identifying the cause of voltage sag based on bidirectional long-term and short-term memory(BiLSTM)neural network is proposed. Firstly, the time-domain characteristics of voltage sag and S-transform energy entropy are extracted, and the comprehensive characteristic index of voltage sag cause identification is constructed.Secondly, a BiLSTM network suitable for voltage sag classification is established to identify the causes of voltage sag.Finally, the evaluation index of multi classification problem is set, and the effectiveness of the proposed identification method is verified by simulation. Simulation results show that the proposed method can identify five voltage sag disturbance sources with high accuracy.

Key words: voltage sag, recognition of voltage sag sources, S transform, BiLSTM

中图分类号: