湖南电力 ›› 2022, Vol. 42 ›› Issue (1): 71-75.doi: 10.3969/j.issn.1008-0198.2022.01.014

• 经验与探讨 • 上一篇    下一篇

基于多层感知器神经网络的锅炉再热蒸汽温度预测

陈刚1, 蒲靖凡2, 梅海龙1, 虞兵1, 张林1, 石川1, 谭鹏2   

  1. 1.国电汉川发电有限公司,湖北 孝感 431616;
    2.华中科技大学能源与动力工程学院煤燃烧国家重点实验室,湖北 武汉 430074
  • 收稿日期:2021-09-13 修回日期:2021-11-05 发布日期:2025-08-05
  • 作者简介:陈刚(1974),男,湖北武汉人,本科,工程师,主要从事电力系统及其自动化、火电厂生产运营及管理、新能源生产运营、管理及研究工作。

Prediction of Boiler Reheat Steam Temperature Based on Multi-Layer Perceptron Neural Network

CHEN Gang1, PU Jingfan2, MEI Hailong1, YU Bing1, ZHANG Lin1, SHI Chuan1, TAN Peng2   

  1. 1. Guodian Hanchuan Power Generation Co., Ltd., Xiaogan 431616, China;
    2. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2021-09-13 Revised:2021-11-05 Published:2025-08-05

摘要: 为大规模消纳新能源,燃煤电站需要频繁调整负荷,这给再热蒸汽温度控制带来了一些困难。以某1 000 MW超超临界燃煤锅炉为研究对象,利用其历史运行数据,建立基于多层感知器神经网络(MLP)的锅炉再热蒸汽温度预测模型。结果表明,所建立的再热蒸汽温度预测模型均方误差仅0.71℃,在平均相对误差、相关系数、训练用时以及泛化效果都要优于长短时记忆神经网络(LSTM)以及支持向量机(SVM)。将该模型预测结果引入控制器有助于提高再热蒸汽温度控制品质。

关键词: 燃煤锅炉, MLP神经网络, 再热蒸汽温度, 预测模型

Abstract: In order to absorb large-scale new energy into the power network, coal-fired power stations require frequent load adjustments, which brings some difficulties to reheat steam temperature control. Based on the historical operation data of a certain 1 000 MW ultra-supercritical coal-fired boiler, a prediction model of boiler reheat steam temperature based on multi-layer perceptron (MLP) neural network is established. The results show that the mean square error of the reheat steam temperature prediction model is only 0.71℃, which is superior to long and short term(LSTM)neural network and short vector machine (SVM)in mean relative error, correlation coefficient, training time and generalization effect. Introducing the prediction results of the model into the controller is helpful to improve the reheat steam temperature control quality.

Key words: coal-fired boiler, MLP neural network, reheated steam temperature, prediction model

中图分类号: