湖南电力 ›› 2022, Vol. 42 ›› Issue (2): 44-49.doi: 10.3969/j.issn.1008-0198.2022.02.008

• 新技术及应用 • 上一篇    下一篇

基于改进Libra-RCNN的输电线路绝缘子识别

闾海庆1, 雷远华1, 王静2, 邢学敏3, 杨静4   

  1. 1.中国能源建设集团湖南省电力设计院有限公司,湖南 长沙 410007;
    2.湖南省第三测绘院,湖南 长沙 410004;
    3.长沙理工大学交通运输工程学院,湖南 长沙 410114;
    4.中国水利水电第八工程局有限公司,湖南 长沙 410004
  • 收稿日期:2021-11-30 修回日期:2022-02-28 发布日期:2025-08-05
  • 作者简介:闾海庆(1981),男,江苏人,硕士,高级工程师,主要研究方向为资源环境与遥感。
  • 基金资助:
    国家自然科学基金项目(42074033)

Transmission Line Insulator Identification Based on Improved Libra-RCNN

LYU Haiqing1, LEI Yuanhua1, WANG Jing2, XING Xuemin3, YANG Jing4   

  1. 1. China Energy Engineering Group Hunan Electric Power Design Institute Co., Ltd., Changsha 410007, China;
    2. Hunan Third Surveying and Mapping Institute, Changsha 410004, China;
    3. School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China;
    4. China Water Resources and Hydropower Eighth Engineering Bureau Co., Ltd., Changsha 410004, China
  • Received:2021-11-30 Revised:2022-02-28 Published:2025-08-05

摘要: 针对无人机航拍输电线路识别绝缘子的定位精度和稳定性较差等问题,提出一种基于ASFF金字塔网络的Libra-RCNN绝缘子检测模型。首先,使用FRN归一化层替代原BN层,消除归一化层对训练批次大小依赖,增加模型学习效率;然后在Libra-RCNN算法金字塔中引入ASFF网络结构,有效解决特征金字塔内部不一致问题;最后借助GIoU交并比替代原IoU交并比,更好精确绝缘子位置。在Insulators_Datasets绝缘子数据集中,改进Libra-RCNN模型平均准确率达94.10%,召回率达97.51%;相较原Libra-RCNN模型分别提高2.23%、2.61%,表明所提算法能稳定、有效地识别绝缘子。

关键词: 绝缘子检测, Libra-RCNN模型, FRN归一化层, ASFF网络, GIoU交并比

Abstract: To solve the problems of poor positioning accuracy and stability of existing insulators identified by UAV aerial photography transmission lines, a Libra-RCNN insulator detection model based on ASFF pyramid network is proposed. Firstly, the FRN normalized layer is used to replace the original BN layer to eliminate the dependence of the normalized layer on the size of training batch and increase the learning efficiency of the model.Then, ASFF network structure is introduced into Libra-RCNN algorithm pyramid to effectively solve the problem of inconsistency inside the feature pyramid.Finally, GIoU crossover ratio is used to replace the original IoU crossover ratio to better accurate insulator position.In Insulators_Datasets data set, the average accuracy of improved Libra-RCNN model is 94.10%, and the recall rate is 97.51%.Compared with the original Libra-RCNN model, the improvement rate is 2.23% and 2.61% respectively, which indicates that the proposed algorithm can identify insulators stably and effectively.

Key words: insulator detection, Libra-RCNN model, filter response normalization(FRN) layer, adaptively spatial feature fusion(ASFF)network, generalized intersection over union

中图分类号: