湖南电力 ›› 2025, Vol. 45 ›› Issue (2): 143-150.doi: 10.3969/j.issn.1008-0198.2025.02.020

• 电力人工智能与数字化 • 上一篇    

基于向量检索增强大语言模型的电力设备选型智能设计支持系统

朱卫东, 黄帅, 胡倩   

  1. 杭州市电力设计院有限公司,浙江 杭州 310000
  • 收稿日期:2024-12-04 修回日期:2025-01-03 发布日期:2025-04-30
  • 通信作者: 朱卫东(1973),男,博士,高级工程师,主要从事电网规划、输变电工程设计与项目建设、新能源接入系统设计等方面的研究工作。
  • 基金资助:
    浙江省科技计划项目-省尖兵领雁研发攻关计划项目(2023C01245); 浙江大有集团有限公司科技项目(DY2022-04)

Intelligent Design Support System of Power Equipment Selection Based on Vector Retrieval Enhanced Large Lan‍guage Model

ZHU Weidong, HUANG Shuai, HU Qian   

  1. Hangzhou Electric Power Design Institute Co., Ltd., Hangzhou 310000, China
  • Received:2024-12-04 Revised:2025-01-03 Published:2025-04-30

摘要: 针对当前的电力设备选型设计支持系统难以应对大规模和高复杂度的选型场景,响应速度慢、设计准确性低的问题,设计一种基于大型语言模型的向量检索增强智能设计支持系统。首先,构建专业知识向量库,将多种具体工程场景下的设计知识编码为高维向量存储在向量库中。然后,采用分组查询注意力和双块注意力机制来优化多轮检索过程,通过计算输入需求与知识库向量的相似度,实现专业知识的快速检索。最后,利用提示工程下的多轮对话和上下文跟踪,优化选型设计方案,提升系统的智能化水平。实验结果表明,该系统在多个复杂的电力设备选型场景中表现优异,可以满足电力行业对高效智能选型设计支持的需求。

关键词: 电力设备选型, 大型语言模型, 向量检索, 自然语言处理, 智能设计

Abstract: Aiming at the problem that the current power equipment selection design support system is difficult to cope with large-scale and high-complexity selection scenarios, with slow response speed and low design accuracy, a vector retrieval-enhanced intelligent design support system based on large language models is designed. Firstly, a professional knowledge vector database is constructed to encode design knowledge under diverse specific engineering scenarios into high-dimensional vectors and stored in the vector database. Then, grouped query attention and dual-block attention mechanisms are used to optimize the multi-round retrieval process, and the fast retrieval of expertise is achieved by calculating similarities between input requirements and knowledge base vectors. Finally, the multi-round dialogue and context tracking under cue engineering are used to optimize the selection design schemes and enhance system intelligence. The experimental results demonstrate the system performs well in several complex power equipment selection scenarios and can meet the power industry's demand for efficient and intelligent selection design support.

Key words: power equipment selection, large language model, vector retrieval, natural language processing, intelligent design

中图分类号: