湖南电力 ›› 2025, Vol. 45 ›› Issue (6): 9-18.doi: 10.3969/j.issn.1008-0198.2025.06.002

• 专家专栏:考虑复杂安全边界的大规模新型电力系统规划建模与优化问题研究 • 上一篇    下一篇

融合IGDT鲁棒-机会型决策的DQN双策略电动汽车移动充电站协同优化调度

李逸凡1, 张晓东2, 张鸿伟3, 陈颉1   

  1. 1.湘潭大学自动化与电子信息学院,湖南 湘潭 411105;
    2.中国铁路广州局集团有限公司长沙机务段,湖南 长沙 410007;
    3.广西电网有限责任公司百色供电局,广西 百色 533099
  • 收稿日期:2025-07-21 修回日期:2025-10-24 出版日期:2025-12-25 发布日期:2026-01-13
  • 通信作者: 陈颉(1992),男,讲师,研究方向为电力负荷预测、电动汽车负荷优化调度、充电设施规划管理等。
  • 作者简介:李逸凡(2003),男,研究方向为电力负荷预测、电动汽车负荷优化调度、充电设施规划管理等。张晓东(2000),男,硕士研究生,研究方向为电动汽车负荷优化调度。张鸿伟(2000),男,硕士研究生,研究方向为电力系统负荷优化调度。
  • 基金资助:
    湖南省教育厅教学改革项目(202401000571); 湘潭大学校级科研项目(22QDZ05)

Method of DNQ Dual-Strategy Collaborative Optimization Scheduling for Electric Vechicle Mobile Charging Stations Integrating IGDT Robustness Opportunistic Decision-Making

LI Yifan1, ZHANG Xiaodong2, ZHANG Hongwei3, CHEN Jie1   

  1. 1. College of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China;
    2. Changsha Locomotive Depot, China Railway Guangzhou Group Co., Ltd., Changsha 410007, China;
    3. Baise Power Supply Bureau, Guangxi Power Grid Co., Ltd., Baise 533099, China
  • Received:2025-07-21 Revised:2025-10-24 Online:2025-12-25 Published:2026-01-13

摘要: 电动汽车(electric vehicle,EV)移动充电站(mobile charging station,MCS)面临需求预测误差影响、多目标协同不足及多主体交互机制缺失等难点,亟须解决多维度协同优化问题。为此,提出一种基于信息间隙决策理论(information gap decision theory,IGDT)的深度Q网络(deep Q-network,DQN)双策略MCS调度优化方法。首先,搭建多目标优化框架,以最小化系统总成本、最小化用户平均等待时间、提升充电需求满足率为目标实现协同平衡。其次,结合IGDT量化充电需求不确定性参数,设计动态调度策略,当高不确定性(如节假日需求突增时),启用鲁棒性模型优先保障高需求区域基础服务不中断。当低不确定性(如工作日通勤时段时),切换机会性模型通过路径优化、电价低谷充电优化成本,以适配不同场景决策偏好。最后,采用改进双策略深度强化学习算法DQN求解模型,并通过仿真实验验证其有效性。算例分析表明,相比传统演员-评论家算法,所提DQN算法模型通过动态选择鲁棒型决策和机会型决策,能够有效降低MCS运行成本,合理满足EV用户的充电需求。

关键词: 电动汽车, 移动充电站, 信息间隙决策理论, 强化学习, 调度优化

Abstract: Electric vehicle(EV) mobile charging stations(MCS) face challenges including demand prediction errors, insufficient multi-objective coordination, and lack of multi-agent interaction mechanisms, necessitating multidimensional collaborative optimization. An IGDT-based dual-strategy DQN optimization method for MCS scheduling is proposed. First, a multi-objective optimization framework is constructed to achieve coordinated balance with the goals of minimizing total system costs, minimizing the average user waiting time, and improving the satisfaction rate of charging demand. Second, by combining IGDT to quantify uncertainty parameters in charging demand, a dynamic scheduling strategy is designed. Under high-uncertainty scenarios(such as holiday demand spikes), a robustness model is activated to prioritize to ensure uninterrupted basic services in high-demand areas. Under low-uncertainty periods(such as weekday commutes periods), an opportunistic model is applied to optimize costs through route planning and off-peak charging, accommodating different scenario-based decision preferences. Finally, an improved dual-strategy deep reinforcement learning DQN algorithm is used to solve the model, and its effectiveness is verified through simulation experiments. Case analysis shows that, compared to the traditional actor-critic(AC) algorithm, the proposed DQN model can effectively reduce MCS operating costs and reasonably meet EV users' charging demands by dynamically selecting robust or opportunistic decision-making.

Key words: electric vehicle, mobile charging station, information gap decision theory(IGDT), reinforcement learning, optimal scheduling

中图分类号: