湖南电力 ›› 2025, Vol. 45 ›› Issue (6): 19-25.doi: 10.3969/j.issn.1008-0198.2025.06.003

• 专家专栏:考虑复杂安全边界的大规模新型电力系统规划建模与优化问题研究 • 上一篇    下一篇

基于高斯混合模型的电动汽车用电行为随机模拟与充电同时系数测算方法

孙充勃1, 原凯1, 宋毅1, 高枝1, 丁羽頔1, 杜孟珂2   

  1. 1.国网经济技术研究院有限公司,北京 102209;
    2.国网北京朝阳供电公司,北京 100031
  • 收稿日期:2025-08-19 修回日期:2025-10-10 出版日期:2025-12-25 发布日期:2026-01-13
  • 作者简介:孙充勃(1987),男,博士,正高级工程师,主要从事配电网规划设计与仿真分析、分布式电源与多元负荷接入等工作。
  • 基金资助:
    国家电网有限公司总部管理科技项目资助(5400-202456208A-1-1-ZN)

Stochastic Simulation of Electric Vehicle Charging Be‍havior and Charging-Simultaneity-Factor Calculation Method Based on Gaussian Mixture Model

SUN Chongbo1, YUAN Kai1, SONG Yi1, GAO Zhi1, DING Yudi1, DU Mengke2   

  1. 1. State Grid Economic and Technological Research Institute Co., Ltd., Beijing 102209, China;
    2. State Grid Beijing Chaoyang Power Supply Company, Beijing 100031, China
  • Received:2025-08-19 Revised:2025-10-10 Online:2025-12-25 Published:2026-01-13

摘要: 为解决电动汽车充电站扩容规划问题,提升充电桩利用率,提出一种同时系数计算方法。采用高斯混合模型和蒙特卡洛算法的排队模型模拟用户充电行为,计算最优车桩比和同时系数。研究多场景要素对同时系数的影响,构建居民区与商业区不同场景的充电设施设计框架,通过分析私人乘用车充电功率特性曲线等测算不同场景下的充电同时系数。算例分析结果表明所提方法具有有效性和可行性,可为电动汽车充电站规划建设提供有效参考。

关键词: 电动汽车, 充电设施, 高斯混合模型, 蒙特卡洛, 充电同时系数

Abstract: To address the expansion planning of electric vehicle(EV) charging stations and improve the utilization of charging piles, a method for calculating the simultaneity factor is proposed. A Gaussian mixture model(GMM) and a Monte Carlo algorithm-based queuing model is used to simulate user charging behavior, thereby calculating the optimal vehicle-to-pile ratio and simultaneity factor. The influence of multi-scenario factors on the simultaneity factor is investigated, and a charging facility design framework for different scenarios in residential and commercial areas is established. By analyzing charging power characteristic curves of private vehicles, the charging simultaneity factor for diverse scenarios is measured. Case study results demonstrate the effectiveness and feasibility of the proposed method, providing valuable insights for the planning and construction of EV charging stations.

Key words: electric vehicle(EV), charging infrastructure, Gaussian mixture model(GMM), Monte Carlo, charging simultaneity factor

中图分类号: