[1] 雷景生, 郝珈玮, 朱国康. 基于“分层-汇集”模型的短期电力负荷预测[J]. 电力建设, 2017, 38(1): 68-75. [2] 陈吕鹏, 殷林飞, 余涛,等. 基于深度森林算法的电力系统短期负荷预测[J]. 电力建设, 2018, 39(11): 42-50. [3] 程宇也. 基于人工神经网络的短期电力负荷预测研究[D].杭州:浙江大学,2017. [4] 潘志远, 韩学山. 电网节点负荷的立体化预测方法[J]. 电力系统自动化, 2012, 36(21): 47-52. [5] 艾欣, 周志宇, 魏妍萍,等. 基于自回归积分滑动平均模型的可转移负荷竞价策略[J]. 电力系统自动化, 2017, 41(20): 26-31,104. [6] LI W, ZHANG Z. Based on time sequence of ARIMA model in the application of short-term electricity load forecasting [C]//Proceedings of the 2009 International Conference on Research Challenges in Computer Science.Shanghai,China:IEEE,2009:11-14. [7] LI S, WANG P, GOEL L. Short-term load forecasting by wavelet transform and evolutionary extreme learning machine[J]. Electric Power Systems Research, 2015, 122: 96-103. [8] XIAO L, SHAO W, LIANG T. A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting[J]. Applied Energy, 2016, 167: 135-153. [9] YING L C, PAN M C. Using adaptive network based fuzzy inference system to forecast regional electricity loads[J]. Energy Conversion and Management, 2008, 49(2): 205-211. [10] 吴倩红, 高军, 侯广松,等. 实现影响因素多源异构融合的短期负荷预测支持向量机算法[J]. 电力系统自动化, 2016, 40(15): 67-72,92. [11] KONG W, DONG Z Y, HILL D J, et al. Short-term residential load forecasting based on resident behaviour learning[J]. IEEE Transactions on Power Systems, 2017, 33(1): 1087-1088. [12] SHI H, XU M, LI R. Deep learning for household load forecasting-a novel pooling deep RNN[J]. IEEE Transactions on Smart Grid, 2017, 9(5): 5271-5280. [13] 王增平, 赵兵, 纪维佳,等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5): 53-58. [14] 王刚. 基于极限学习机的时间序列预测[D].沈阳:沈阳工业大学,2019. [15] LI S, WANG P, GOEL L. A noval wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection[J]. IEEE Transactions on Power Systems, 2016, 31(3): 1788-1798. [16] ZHANG R, XU Y, GONG Z Y, et al. Short-term load forecasting of Australian national electricity market by an ensemble model of extreme learning machine[J]. IET Generation, Transmission &Distribution, 2013, 7(4): 391-397. [17] 周召娣. 极限学习机相关算法的优化及应用研究[D].南京:南京信息工程大学,2016. [18] 尹洪红, 杨晓文, 刘佳鸣,等. 一种基于蚁狮优化的极限学习机[J]. 计算机应用与软件, 2019, 36(8): 230-234. [19] HUANG G B, ZHOU H M, DING X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, 2012, 42(2): 513-529. [20] HUANG G B, WANG D H, LAN Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122. [21] 徐睿, 梁循, 齐金山,等. 极限学习机前沿进展与趋势[J]. 计算机学报, 2019, 42(7): 1640-1670. [22] 王宏志, 姜方达, 周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报(工学版), 2019, 49(4): 1363-1368. [23] ZENG N, ZHANG H, LIU W B, et al. A switching delayed PSO optimized extreme learning machine for short-term load forecasting[J]. Neurocomputing, 2017, 240: 175-182. |