[1] PARK C,HEO W G.Review of the changing electricity industry value chain in the ICT convergence era[J]. Journal of Cleaner Production,2020,258(4):120743. [2] ALMESHAIEI E,SOLTAN H.A methodology for electric power load forecasting[J]. Alexandria Engineering Journal, 2011,50(2):137-144. [3] PRABADEVI B,PHAM Q V,LIYANAGE M,et al.Deep learning for intelligent demand response and smart grids:a comprehensive survey[J]. Computer Science Review,2024,51:100617. [4] MAHMUD M A.Isolated Area Load Forecasting using linear regression analysis:practical approach[J]. Energy and Power Engineering,2011,3(4):547-550. [5] 唐祥玲,王平,李思岑,等. 基于方差-协方差组合预测的中长期电力负荷预测研究[J]. 电气技术,2015,16(1):15-18. [6] 韩富尧,刘亚伟. 基于计量经济-灰色理论的多变量电力负荷预测方法[J]. 电气技术,2017,18(7):37-40. [7] AHMAD A S,HASSAN M Y,ABDULLAH M P,et al.A review on applications of ANN and SVM for building electrical energy consumption forecasting[J]. Renewable and Sustainable Energy Reviews,2014,33:102-109. [8] 吴润泽,包正睿,王文韬,等. Hadoop架构下基于模式匹配的短期电力负荷预测方法[J]. 电工技术学报,2018,33(7):1542-1551. [9] 周华鑫. 基于PSOEM-LSSVM的中长期电力负荷预测及其应用研究[D]. 重庆:重庆大学,2013. [10] 詹仁俊. 基于K-means聚类的小波支持向量机配电网短期负荷预测及应用[J]. 供用电,2019,36(4):64-70. [11] QIN J,LIU H Z,MENG H F,et al.Robust dynamic economic dispatch in smart grids using an intelligent learning technology[J]. IEEE Transactions on Network Science and Engineering,2024,11(4):3759-3770. [12] ZHANG W,LI M,WANG X M,et al.Study on the Mechanical Properties of Novel Composite Materials[J]. Journal of Materials Science,2023,58(12):4567-4579. [13] 赵洋,王瀚墨,康丽,等. 基于时间卷积网络的短期电力负荷预测[J]. 电工技术学报,2022,37(5):1242-1251. [14] 谷云东,张素杰,冯君淑. 大用户电力负荷的多模型模糊综合预测[J]. 电工技术学报,2015,30(23):110-115. [15] 刘伟,王洪志. 基于改进注意力机制的时间卷积网络-长短期记忆网络短期电力负荷预测[J]. 电气技术,2024,25(10):8-14. [16] 陈吕鹏,殷林飞,余涛,等. 基于深度森林算法的电力系统短期负荷预测[J]. 电力建设,2018,39(11):42-50. [17] NGUYEN V B,DUONG M T,LE M H.Electricity demand forecasting for smart grid based on deep learning approach[C]//2020 5th International Conference on Green Technology and Sustainable Development(GTSD). Ho Chi Minh City,Vietnam. IEEE,2020:353-357. [18] SON N,YANG S,NA J.Deep neural network and long short-term memory for electric power load forecasting[J].Applied Sciences,2020,10(18):6489. [19] SHAO X R,KIM C S,SONTAKKE P,et al.Accurate deep model for electricity consumption forecasting using multi-channel and multi-scale feature fusion CNN-LSTM[J]. Energies,2020,13(8):1881. [20] HUANG S T,SHEN J,LV Q Q,et al.A novel NODE approach combined with LSTM for short-term electricity load forecasting[J]. Future Internet,2023,15(1):22. [21] YANG Y B,HAQ E U,JIA Y W.A novel deep learning approach for short and medium-term electrical load forecasting based on pooling LSTM-CNN model[C]//2020 IEEE/IAS Industrial and Commercial Power System Asia(I&CPS Asia). Weihai,China. IEEE,2020:26-34. [22] 程定芳,任永建,陈正洪. 精细化气象因子对短期电力负荷预测的影响研究[J]. 华中师范大学学报(自然科学版),2020,54(5):792-797. [23] 吴怡. 基于改进Transformer和时间卷积网络的电力负荷预测方法研究[D]. 秦皇岛:燕山大学,2023. [24] ZACHARY C.(Deep Learning′s Deep Flaws)′s Deep Flaws[EB/OL]. (2015-01-26)[2025-02-22]. https://www.kdnuggets.com/2015/01/deep-learning-flaws-universal-machine-learning.html. [25] SHAHAM U,YAMADA Y,NEGAHBAN S. Understanding adversarial training:Increasing local stability of neural nets through robust optimization[EB/OL].(2016-01-16)[2025-05-16]. https://arxiv.org/abs/1511.05432. [26] 中国电机工程学会电工数学专委会. 第九届“中国电机工程学会杯”全国大学生电工数学建模竞赛题目[EB/OL].(2016-04-25)[2025-02-22]. http://shumo.nedu.edu.cn. [27] 任建吉,位慧慧,邹卓霖,等. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制,2022,50(8):108-116. [28] GOODFELLOW I J,SHLENS J,SZEGEDY C. Explaining and Harnessing Adversarial Examples[EB/OL]. (2015-03-20)[2025-05-16]. https://arxiv.org/abs/1412.6572. |