湖南电力 ›› 2024, Vol. 44 ›› Issue (6): 76-82.doi: 10.3969/j.issn.1008-0198.2024.06.011

• 新技术及应用 • 上一篇    下一篇

基于自注意力感知的配电网杆塔点云语义分割

黄志鸿1,2, 刘宇3, 张辉3, 徐先勇1, 彭金柱4   

  1. 1.国网湖南省电力有限公司电力科学研究院,湖南 长沙 410208;
    2.湖南省湘电试验研究院有限公司,湖南 长沙 410208;
    3.湖南大学机器人学院,湖南 长沙 410082;
    4.郑州大学电气与信息工程学院,河南 郑州 450001
  • 收稿日期:2024-07-29 修回日期:2024-09-29 出版日期:2024-12-25 发布日期:2024-12-25
  • 通信作者: 刘宇(2000),女,硕士,研究方向为电力场景三维点云语义分割。
  • 作者简介:黄志鸿(1993),男,博士,高级工程师,研究方向为电力设备故障智能诊断。张辉(1983),男,博士,教授,博士生导师,研究方向为机器人视觉检测与控制、深度学习图像处理。徐先勇(1982),男,博士,高级工程师,研究方向为电力智能巡检、调频式谐振特高压电源等。彭金柱(1980),男,博士,教授,博士生导师,研究方向为智能控制理论及其在电力控制与传动技术中的应用。
  • 基金资助:
    湖南省杰出青年科学基金(2021JJ10025); 国网湖南省电力有限公司科技项目(5216A522001Y); 湖南省科技人才托举工程-“小荷”科技人才项目(2023TJ-X48)

Point Cloud Semantic Segmentation of Distribution Net‍work Tower Based on Self-Attention Perception

HUANG Zhihong1,2, LIU Yu3, ZHANG Hui3, XU Xianyong1, PENG Jinzhu4   

  1. 1. State Grid Hunan Electric Power Company Limited Research Institute, Changsha 410208, China;
    2. Hunan Xiangdian Test and Research Institute Co., Ltd., Changsha 410208, China;
    3. School of Robotics,Hunan University, Changsha 410082, China;
    4. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
  • Received:2024-07-29 Revised:2024-09-29 Online:2024-12-25 Published:2024-12-25

摘要: 从机载激光点云数据中自动、准确地提取配电场景中的电力杆塔是常规电力巡检的关键步骤。由于山区地形起伏大,植被茂密,特征难以区分,利用现有方法从山区电力场景中提取目标仍具有挑战。为了解决这个问题,提出一种基于自注意力感知的语义分割方法,主要包括颜色特征提取、局部位置编码和多层注意力感知模块。该方法在处理大规模配电网场景点云时,可将RGB特征作为点云空间特征的附着属性进行融合,从而提高语义分割精度。经实验结果表明,该方法在电力场景中具有显著的性能优势,点云分割精度超过了90%,其有效性在公共数据集S3DIS中得到验证。

关键词: 电力巡检, RGB, 激光点云, 语义分割, 深度学习

Abstract: Automatically and accurately extracting power towers from airborne laser point cloud data in power distribution scenes is a critical step in routine power inspections. Due to the undulating terrainand dense vegetationin mountainous areas,the features are difficult to distinguish, and it remains challenging to extract targets from mountainous power scenes using existing methods. To solve this problem, a semantic segmentation method based on self-attention perception is proposed,which mainly includes color feature extraction,local position encoding,and multi-layer attention perception modules. When processing large-scale point clouds of distribution network scenes, this method can integrate RGB features as attached attributes of the point cloud's spatial features,thereby improving the accuracy of semantic segmentation. Experimental results show that the proposed method has significant performance advantages in power scenarios, achieving a point cloud segmentation accuracy of over 90%, and its effectiveness has been validated on the public S3DIS dataset.

Key words: power inspection, RGB, laser point cloud, semantic segmentation, deep learning

中图分类号: