湖南电力 ›› 2025, Vol. 45 ›› Issue (1): 93-99.doi: 10.3969/j.issn.1008-0198.2025.01.014

• 电网运行与控制 • 上一篇    下一篇

基于改进K-means++和LSTM算法的居民负荷远程分解方法

廖贺, 喻伟, 熊政, 豆龙龙, 周惯衡   

  1. 江苏方天电力技术有限公司,江苏 南京 211106
  • 收稿日期:2024-11-01 修回日期:2024-11-26 出版日期:2025-02-25 发布日期:2025-03-05
  • 通信作者: 廖贺(1985),男,硕士,工程师,研究方向为智能配电网、电力大数据等。

Remote Decomposition Method for Residential Load Based on Improved K-means++ and LSTM algorithm

LIAO He, YU Wei, XIONG Zheng, DOU Longlong, ZHOU Guanheng   

  1. Jiangsu Frontier Electric Power Technology Co., Ltd., Nanjing 211106, China
  • Received:2024-11-01 Revised:2024-11-26 Online:2025-02-25 Published:2025-03-05

摘要: 针对低压居民用户数量庞大,额外安装监测设备或升级现有监测设备成本高昂的问题,基于高级量测体系的大规模分钟级采集数据,提出一种改进K-means++和长短时记忆算法的居民负荷远程分解方法。首先,基于滑动窗的双边累计和算法监测更加精准、高效、实时地捕捉数据的变化。其次,采用改进的K-means++算法找到具有代表性的负荷进行负荷识别且保证运算速率。最后利用长短时记忆算法,捕捉随着时间发生规律性变化的数据来完成负荷分解。通过在1 min的低采样频率下采集的居民日常负荷数据,充分验证了算法的适用性。

关键词: 高级量测体系, K-Means++算法, LSTM算法, 居民负荷, 远程分解

Abstract: In response to the large number of low-voltage residential users and the high cost of installing additional monitoring equipment or upgrading existing monitoring equipment, an improved K-means++ and long short-term memory algorithm based on advanced measurement system for large-scale minute level data collection is proposed for remote load decomposition of residents. Firstly, in order to capture changes in data more accurately and efficiently, and in real-time a sliding window based bilateral accumulation and algorithm monitoring is designed. Secondly, in order to identify representative loads and ensure computation speed, an improved K-means++ algorithm is adopted. Finally, using long short-term memory algorithms, data that undergoes regular changes over time are captured to complete load decomposition. At a low sampling frequency of 1 minute, the applicability of the proposed algorithm is fully validated through the collection of daily load data from residents.

Key words: advanced measurement system, K-Means++ algorithm, LSTM algorithm, residential load, remote decomposition

中图分类号: