湖南电力 ›› 2025, Vol. 45 ›› Issue (3): 135-140.doi: 10.3969/j.issn.1008-0198.2025.03.019

• 电力人工智能与数字化 • 上一篇    下一篇

基于RBF神经网络算法的复合绝缘子红外测温修正方法

李勃铖1,2, 杨昊彦1,2, 吴坚1,2, 刘雁灿3, 刘华洲3, 陈彬3   

  1. 1.国网湖南省电力有限公司超高压输电公司,湖南 长沙 410004;
    2.带电作业及智能巡检技术国家电网公司实验室(培育),湖南 长沙 410004;
    3.三峡大学电气与新能源学院,湖北 宜昌 443002
  • 收稿日期:2025-04-18 修回日期:2025-04-24 发布日期:2025-07-02
  • 作者简介:李勃铖(1996),男,工程师,主要从事输变电工程环境、输电线路智能巡检方面的研究工作。
  • 基金资助:
    湖北省自然科学基金面上项目(2021CFB149); 国网湖南省电力有限公司科技项目(5216AJ230005)

Infrared Temperature Measurement Correction Method for Composite Insulators Based on RBF Neural Network Algorithm

Li Bocheng1,2, YANG Haoyan1,2, WU Jian1,2, LiU Yancan3, LiU Huazhou3, CHEN Bin3   

  1. 1. State Grid Hunan Extra High Voltage transmission Company, Changsha 410004, China;
    2. Live Working and intelligent inspection Technology of State Grid Corporation of China Laboratory (incubation), Changsha 410004, China;
    3. College of Electrical Engineering & New Energy, China Three Gorges University,Yichang 443002, China
  • Received:2025-04-18 Revised:2025-04-24 Published:2025-07-02

摘要: 针对复合绝缘子在无人机红外巡检过程中因测距与视角变化引起的温度测量误差问题,提出修正提升红外测温精度的方法,确保缺陷识别的准确性与可靠性。研究依托搭建的110 kV复合绝缘子红外温升实验平台,采集不同拍摄距离与角度下的红外图像数据,并以光纤温度传感器测得的真实温度作为基准,构建红外测温误差样本集。基于该数据集,采用径向基函数(radial basis function,RBF)神经网络建立红外测温误差修正模型,实现对原始红外测温值的非线性修正。结果表明,RBF模型修正后红外测温仪测得的温度与实际温度的平均差值降至0.19 ℃(相对误差为2.07%),优于线性、非线性及指数回归方法(平均误差为0.37~0.82 ℃),且泛化能力更强。该方法有效提升了无人机红外巡检的测温准确性,为绝缘子状态评估提供了可靠技术支撑。

关键词: 复合绝缘子, 红外测温, RBF神经网络, 温度修正

Abstract: Aiming at the problem of temperature measurement error caused by distance measurement and visual angle change during UAV infrared patrol inspection of composite insulators, this paper proposes a method to improve the accuracy of infrared temperature measurement and ensure the accuracy and reliability of defect identification. Based on the built 110 kV composite insulator infrared temperature rise experimental platform, the system collects infrared image data at different shooting distances and angles, and uses the real temperature measured by the optical fiber temperature sensor as the calibration benchmark to build an infrared temperature measurement error sample set. Based on the data set, the radial basis function (RBF) neural network is used to establish the error correction model of infrared temperature measurement, and realize the nonlinear correction of the original infrared temperature measurement value. The results show that the average temperature difference of infrared thermometer after RBF model correction is reduced to 0.19℃ (the relative error is 2.07%), which is better than linear, nonlinear and exponential regression methods (the average temperature difference is 0.37~0.82℃), and has stronger generalization ability. This method effectively improves the temperature measurement accuracy of UAV infrared patrol inspections, and provides reliable technical support for the condition assessment of insulators.

Key words: composite insulator, infrared thermometry, RBF neural network, temperature correction

中图分类号: