湖南电力 ›› 2025, Vol. 45 ›› Issue (4): 74-82.doi: 10.3969/j.issn.1008-0198.2025.04.011

• 电网运行与控制 • 上一篇    下一篇

知识引导和无监督学习混合驱动的电力用户用电异常辨析方法

吕伟嘉1, 李晓辉1, 滕永兴1, 陈娟1, 门英君2, 杜天硕3   

  1. 1.国网天津市电力公司营销服务中心,天津 300210;
    2.国网天津市电力公司,天津 300010;
    3.天津大学,天津 300072
  • 收稿日期:2025-05-16 修回日期:2025-05-26 出版日期:2025-08-25 发布日期:2025-09-05
  • 通信作者: 杜天硕(1999),男,硕士,主要从事智能电网调度与规划、智能电网态势感知技术等领域研究工作。
  • 作者简介:吕伟嘉(1987),女,学士,高级工程师,从事电能计量等领域的研究工作。李晓辉(1973),男,学士,正高级工程师,主要从事智能用电、电力计量技术等领域研究工作。滕永兴(1987),男,学士,高级工程师,主要从事智能用电、电力计量技术等领域研究工作。陈娟(1993),女,硕士,工程师,主要从事智能用电等领域研究工作。门英君(1966),男,硕士,高级工程师,主要从事电力营销技术等领域研究工作。
  • 基金资助:
    国网天津市电力公司科技项目资助(营服-研发2023-04)

A Hybrid-Driven Method of Knowledge Guidance and Unsupervised Learning for Power Users Anomaly Discrimination

LYU Weijia1, LI Xiaohui1, TENG Yongxing1, CHEN Juan1, MEN Yingjun2, DU Tianshuo3   

  1. 1. State Grid Tianjin Electric Power Company Marketing Service Center, Tianjin 300210, China;
    2. State Grid Tianjin Electric Power Company, Tianjin 300010, China;
    3. Tianjin University, Tianjin 300072, China
  • Received:2025-05-16 Revised:2025-05-26 Online:2025-08-25 Published:2025-09-05

摘要: 针对基于规则的传统电力用户异常检测方法存在人工标注成本高、数据特征表征能力有限等问题,提出一种知识引导与无监督学习融合的电力用户异常检测混合模型。首先,基于用电行为分析构建包含负荷率、峰谷差率等特征的多维负荷特性指标体系,运用主成分分析实现高维数据的特征提取与可视化呈现;进而通过重建误差和局部离群因子算法分别量化用户用电模式的异常偏离程度与空间分布异常概率。其次对用户用电行为的异常度和疑似概率进行排序,只需检测少数异常度高的用户即可发现大部分异常用户。最后,在算例分析中分别通过小型和大型数据集对所提方法进行验证。结果表明,该方法的AUC值可达0.825 1,不仅能有效识别出异常用户,还能降低误报率,提高检测准确性,为电力公司提供一个高效、可靠的用电异常辨析工具。

关键词: 反窃电技术, 异常辨析, 无监督学习, 主成分分析, 局部矩阵重构

Abstract: In view of the problems of high manual annotation cost and limited data feature representation ability of traditional rule-based detection methods, a hybrid model for anomaly detection of power users that integrates knowledge guidance and unsupervised learning is proposed. First, a multi-dimensional load characteristic index system containing load rate, peak-to-valley difference rate and other features is constructed based on power consumption behavior analysis, and principal component analysis is used to realize feature extraction and visualization of high-dimensional data. Then, the abnormal deviation degree of users' power consumption modes and abnormal probability of spatial distribution are quantified by reconstruction error and local outlier factor algorithm respectively. Secondly, the abnormality degree and suspected probability of users' power consumption behavior are ranked, so that most abnormal users can be found by detecting only a few users with high abnormality degree. Finally, the proposed method is verified by small and large data sets respectively in the case analysis. The results show that the AUC score of this method can reach 0.8251, which has significant superiority. In addition, this method can not only effectively identify abnormal users, but also reduce the false alarm rate and improve the accuracy of detection, providing an efficient and reliable power consumption anomaly analysis tool for power companies.

Key words: anti theft techniques, anomaly discrimination, unsupervised learning, principal component analysis, local matrix reconstruction

中图分类号: