湖南电力 ›› 2025, Vol. 45 ›› Issue (5): 1-7.doi: 10.3969/j.issn.1008-0198.2025.05.001

• 专家专栏:配网灵活储能技术 •    下一篇

基于双向长短期记忆网络与注意力机制的锂电池剩余使用寿命预测模型

朱光明1,2, 胡锦豪1,3, 徐松1,2, 万代1   

  1. 1.国网湖南省电力有限公司电力科学研究院, 湖南 长沙 410208;
    2.高效清洁发电技术湖南省重点实验室, 湖南 长沙 410208;
    3.湖南省湘电试验研究院有限公司, 湖南 长沙 410208
  • 收稿日期:2025-08-20 修回日期:2025-09-05 发布日期:2025-11-11
  • 通信作者: 胡锦豪(1994),男,硕士,工程师,研究方向为电力电子技术。
  • 作者简介:朱光明(1975),男,博士,教授级高级工程师,研究方向为电池储能、新能源并网、电力电子技术; 徐松(1981),男,博士,高级工程师,研究方向为电池储能技术;万代(1985),男,高级工程师,研究方向为新能源并网、电力电子技术。
  • 基金资助:
    湖南省湘电试验研究院有限公司科技项目(5216AV24000A)

Remaining Useful Life Prediction Model Based on Bidirectional Long Short-Term Memory Network and Attention Mechanism for Lithium Batteries

ZHU Guangming1,2, HU Jinhao1,3, XU Song1,2, WAN Dai1   

  1. 1. State Grid Hunan Electric Power Company Limited Research Institute, Changsha 410208, China;
    2. Hunan Province Key Laboratory of Efficient and Clean Power Generation Technologies, Changsha 410208, China;
    3. Hunan Xiangdian Test & Research Institute Co., Ltd., Changsha 410208, China
  • Received:2025-08-20 Revised:2025-09-05 Published:2025-11-11

摘要: 为提升锂电池剩余使用寿命预测的可靠性与准确性,构建一种基于双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)-注意力(Attention)机制的锂电池剩余使用寿命预测模型。该模型先以锂电池充放电过程中的关键性能参数为输入,利用BiLSTM网络的双向记忆特性,充分捕捉电池性能退化过程中的长短期时间依赖关系,有效挖掘隐藏在数据中的退化趋势特征。其次,引入Attention机制,对影响剩余使用寿命预测的关键时间步特征赋予更高权重,强化模型对重要信息的聚焦能力,进而输出精准的剩余使用寿命预测值。通过在CALCE公开的4组锂电池数据集上进行验证分析,实验结果表明,BiLSTM-Attention模型的R2值分别达到98.77%、99.64%、99.50%、98.47%,与其他预测方法相比,该方法展现出更优的预测性能。

关键词: 锂电池, 剩余使用寿命预测, BiLSTM, 注意力机制

Abstract: To enhance the reliability and accuracy of predictions, a lithium battery RUL prediction model based on Bidirectional Long Short-Term Memory Network(BiLSTM) and Attention mechanism is constructed. Firstly, the model takes the key performance parameters during the charge-discharge process of lithium batteries as the inputs, and utilizes the bidirectional memory characteristics of the BiLSTM network to fully capture the long-term and short-term temporal dependencies in the battery performance degradation process and effectively excavates the degradation trend features hidden in the data. Secondly, the Attention mechanism is introduced to assign higher weights to the key time-step features that affect RUL prediction, strengthening the model's ability to focus on important information and thereby outputting accurate RUL prediction values. Validation and analysis on four sets of public CALCE lithium battery datasets show that the R2 values of the BiLSTM-Attention model reach 98.77%, 99.64%, 99.50%, and 98.47% respectively. Compared with other prediction methods, this method exhibits superior prediction performance.

Key words: lithium battery, remaining useful life (RUL) prediction, BiLSTM, attention mechanism

中图分类号: