[1] ZHAO F M,GAO D X,CHENG Y M,et al.Application of state of health estimation and remaining useful life prediction for lithium-ion batteries based on AT-CNN-BiLSTM[J]. Scientific Reports,2024,14:29026. [2] HU X S,FENG F,LIU K L,et al.State estimation for advanced battery management:key challenges and future trends?[J]. Renewable and Sustainable Energy Reviews,2019,114:109334. [3] SADABADI K K,JIN X,RIZZONI G.Prediction of remaining useful life for a composite electrode lithium-ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of Power Sources,2021,481:228861. [4] YANG X Z,ZHANG H Y,LIU Q,et al.The Li-ion battery industry and its challenges[J]. Nature Reviews Chemistry,2025,9(8):497-498. [5] WANG M,WU S M,CHEN Y,et al.Quantitative safety assessment of lithium-ion batteries:integrating abuse risks and intrinsic safety[J]. Journal of Power Sources,2025,640:236789. [6] YAO L,XU S M,TANG A H,et al.A review of lithium-ion battery state of health estimation and prediction methods[J]. World Electric Vehicle Journal,2021,12(3):113. [7] VIGNESH S,CHE H S,SELVARAJ J,et al.State of Health(SOH)estimation methods for second life lithium-ion battery:Review and challenges[J]. Applied Energy 2024,369:123542. [8] CHEN L P,XIE S Q,LOPES A M,et al.A new SOH estimation method for Lithium-ion batteries based on model-data-fusion[J]. Energy,2024,286:129597. [9] VAN C N,QUANG D T.Estimation of SOH and internal resistances of Lithium-ion battery based on LSTM network[J]. International Journal of Electrochemical Science,2023,18(6):100166. [10] 戴海峰,王冬晨,姜波. 基于电化学阻抗谱的电池荷电状态估计[J]. 同济大学学报(自然科学版),2019,47(增刊1):95-98. [11] ZHANG Y W,TANG Q C,ZHANG Y,et al.Identifying degradation patterns of lithium-ion batteries from impedance spectroscopy using machine learning[J]. Nature Communications,2020,11:1706. [12] 王帅,韩伟,陈黎飞,等. 基于粒子滤波的锂离子电池剩余寿命预测[J]. 电源技术,2020,44(3):346-351. [13] 吴晓丹,范波,王建祥,等. 基于VMD-TCN-Attention的锂电池寿命预测[J]. 电源技术,2023,47(10):1319-1325. [14] LU J H,XIONG R,TIAN J P,et al.Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning[J]. Energy Storage Materials,2022,50:139-151. [15] UNGUREAN L,MICEA M V,CARSTOIU G.Online state of health prediction method for lithium-ion batteries based on gated recurrent unit neural networks[J]. International Journal of Energy Research,2020,44(8):6767-6777. [16] QU J T,LIU F,MA Y X,et al.A neural-network- based method for RUL prediction and SOH monitoring of lithium-ion battery[J]. IEEE Access,2019,7:87178-87191. [17] LI P,ZHANG Z J,XIONG Q Y,et al.State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network[J]. Journal of Power Sources, 2020,459:228069. [18] WANG F K,HUANG C Y,MAMO T.Ensemble model based on stacked long short-term memory model for cycle life prediction of lithium-ion batteries[J]. Applied Sciences,2020,10(10):3549. [19] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [20] SCHUSTER M,PALIWAL K K.Bidirectional recurrent neural networks[J]. IEEE transactions on Signal Processing,1997,45(11):2673-2681. [21] HUANG Z Z,LIANG S W,LIANG M F.A generic shared attention mechanism for various backbone neural networks[J]. Neurocomputing,2025,611:128697. [22] TAO S Y,MA R F,ZHAO Z X,et al.Generative learning assisted state-of-health estimation for sustainable battery recycling with random retirement conditions[J]. Nature Communications,2024,15:10154. |