[1] 艾绍伟,喻连喜,苏龙. 新型配电网技术分析与研究[J]. 电工技术,2019(5):84-85. [2] 王成山,武震,李鹏. 分布式电能存储技术的应用前景与挑战[J]. 电力系统自动化,2014,38(16):1-8,73. [3] 闫群民,穆佳豪,马永翔,等. 分布式储能应用模式及优化配置综述[J]. 电力工程技术,2022,41(2):67-74. [4] 叶筱,蒋克勇,孙瑞松,等. 电化学储能变换器拓扑与控制策略综述[J]. 节能,2020,39(7):148-158. [5] 吴靖,许杰,陈佩军,等. 电池储能系统中电力电子变换器并网结构发展综述[J]. 浙江电力,2021,40(3):104-112. [6] 王秀瑞,何晋伟,杜李扬. 直流微电网电池储能系统串并联结构分散控制[J]. 电源学报,2019,17(6):91-97. [7] 金一丁,宋强,刘文华. 大容量链式电池储能系统及其充放电均衡控制[J]. 电力自动化设备,2011,31(3):6-11. [8] LI Y,HAN Y H.A module-integrated distributed battery energy storage and management system[J]. IEEE Transactions on Power Electronics,2016,31(12):8260-8270. [9] 刘林,熊兰,高迎飞. 应用于储能变流器的LLC/CLLC谐振变换器综述[J]. 电源学报,2021,19(6):50-63. [10] 伊军,克帕依吐·吐尔逊,张龙,等. 构网型储能变流器VSG控制技术综述[J]. 自动化仪表,2024,45(10):1-6. [11] 徐少华,李建林,惠东. 多储能逆变器并联系统在微网孤岛条件下的稳定性分析及其控制策略[J]. 高电压技术,2015,41(10):3266-3273. [12] WANG G S,KONSTANTINOU G,TOWNSEND C D,et al.A review of power electronics for grid connection of utility-scale battery energy storage systems[J]. IEEE Transactions on Sustainable Energy,2016,7(4):1778-1790. [13] 李洁,孙宏宇,许椿凯,等. 参与新型电力系统需求响应的分布式储能资源管理与策略研究[J]. 供用电,2022,39(2):29-35. [14] 曾伟,熊俊杰,李建林,等. 直流微电网多储能并联电压和功率共享控制方法研究[J]. 电工电能新技术,2023,42(9):36-45. [15] 蔡旭,李睿,刘畅,等. 高压直挂储能功率变换技术与世界首例应用[J]. 中国电机工程学报,2020,40(1):200-211. [16] 陶以彬,殷实,李官军,等. 直挂式储能变流器参数设计及控制技术研究[J]. 电力电子技术,2022,56(1):35-39,73. [17] 张建文,孙人成,周剑桥,等. 多中压交流端口链式电池储能功率变换系统[J]. 中国电机工程学报,2022,42(24):8972-8984. [18] ZHENG Z D,WANG K,XU L,et al.A hybrid cascaded multilevel converter for battery energy management applied in electric vehicles[J]. IEEE Transactions on Power Electronics,2014,29(7):3537-3546. [19] MUKHERJEE N,STRICKLAND D.Control of cascaded DC-DC converter-based hybrid battery energy storage systems:part I:stability issue[J]. IEEE Transactions on Industrial Electronics,2016,63(4):2340-2349. [20] MUKHERJEE N,STRICKLAND D.Control of cascaded DC-DC converter-based hybrid battery energy storage systems:part II:Lyapunov approach[J]. IEEE Transactions on Industrial Electronics,2016,63(5):3050-3059. [21] BI K T,SUN L,AN Q T,et al.Active SOC balancing control strategy for modular multilevel super capacitor energy storage system[J]. IEEE Transactions on Power Electronics,2019,34(5):4981-4992. [22] HOU N,LI Y W.A tunable power sharing control scheme for the output-series DAB DC-DC system with independent or common input terminals[J]. IEEE Transactions on Power Electronics,2019,34(10):9386-9391. [23] CHOWDHURY S,SHAHEED M N B,SOZER Y. State-of-charge balancing control for modular battery system with output DC bus regulation[J]. IEEE Transactions on Transportation Electrification,2021,7(4):2181-2193. [24] KAMEL M,SANKARANARAYANAN V,ZANE R,et al.State-of-charge balancing with parallel and series output connected battery power modules[J]. IEEE Transactions on Power Electronics,2022,37(6):6669-6677. [25] YILDIRIM B,ALI ELGENDY M,SMITH A N,et al.Efficiency optimized power-sharing algorithm for modular battery energy storage systems[J]. IEEE Transactions on Industrial Electronics,2023,70(11):11299-11309. [26] 任林涛,汪飞,肖杨婷,等. 四开关Buck-Boost变换器研究综述[J]. 电气工程学报,2023,18(2):52-69. [27] 苏适,栾思平,罗恩博,等. 一种基于级联Buck-Boost变换器的多储能并联系统及其控制策略设计[J]. 电力科学与技术学报,2022,37(3):70-76. [28] LEE H S,YUN J J.High-efficiency bidirectional buck-boost converter for photovoltaic and energy storage systems in a smart grid[J]. IEEE Transactions on Power Electronics,2019,34(5):4316-4328. [29] 张晨辉,李海啸,郭强. 基于FSBB变换器的直流微电网SOC平衡控制策略[J]. 电工电气,2024(3):29-37. [30] XIAO L X,RUAN X B,TSE C K.Smooth reversal of power transfer direction for ZVS bidirectional four-switch buck-boost converter[J]. IEEE Transactions on Industrial Electronics,2025,72(1):600-609. [31] 李新培,陈强,李睿,等. 基于大容量链式储能系统的DAB移相控制研究[J]. 电力电子技术,2015,49(12):98-100. [32] ZHAO S S,LI Q,LEE F C,et al.High-frequency transformer design for modular power conversion from medium-voltage AC to 400 VDC[C]//IEEE Transactions on Power Electronics. IEEE,2017:7545-7557. [33] 胡石阳,刘国荣,金楠,等. 双有源桥直流储能系统软开关优化控制[J]. 电源学报,2020,18(5):140-147. [34] ZENG Y,MASWOOD A I,POU J,et al.Active disturbance rejection control using artificial neural network for dual-active-bridge-based energy storage system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2023, 11(1):301-311. [35] 宋晋峰,陈国栋,祝志成. 用于直流送出型光伏电站功率波动平抑的级联式电池储能系统变换器损耗优化[J]. 太阳能学报,2023,44(11):100-109. [36] 孔玮,屈克庆,孙凯,等. 一种应用于储能系统的两级式直流变换器拓扑与设计[J]. 电工电能新技术,2019,38(8):10-18. [37] LIU Y C,CHEN C,CHEN K D,et al.High-frequency and high-efficiency isolated two-stage bidirectional DC-DC converter for residential energy storage systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2020,8(3):1994-2006. [38] 侯宇琦,王萍,王议锋,等. 基于GaN FET的1MHz多路CLLC双向直流变换器[J]. 电气传动,2021,51(18):14-22. [39] WEN C X,HU M M,HU C B,et al.Research on characteristics of bidirectional CLLC DC-DC transformer used in DC microgrid[J]. The Journal of Engineering,2019,2019(18):5351-5354. [40] 王弘珺,郁专,谢少军. 双向CLLC谐振变换器的参数设计方法研究[J]. 电源学报,2025,23(1):11-20,66. [41] 周奇勋,张红,曹世宏,等. 基于改进下垂法的微电网逆变器并联控制技术[J]. 电力系统及其自动化学报,2018,30(8):25-31. [42] 杨海柱,岳刚伟,康乐. 微网分段动态自适应下垂控制策略研究[J]. 电力系统保护与控制,2019,47(8):80-87. [43] 李大伟,唐守元,朱婉路,等. 基于自适应Q-V特性的储能暂态电压支撑控制策略研究[J]. 太阳能学报,2024,45(12):536-544. [44] 田春胜,任永峰,胡志帅,等. 基于自恢复型下垂控制的微电网运行控制策略研究[J]. 太阳能学报,2024,45(8):71-77. [45] 张纯江,曾松林,庆宏阳,等. 基于改进自恢复下垂控制的储能逆变器多维度优化控制[J]. 电网技术,2023,47(12):5193-5205. [46] FANG J Y,TANG Y,LI H C,et al.A battery/ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators[J]. IEEE Transactions on Power Electronics,2018,33(4):2820-2824. [47] 杨赟,梅飞,张宸宇,等. 虚拟同步发电机转动惯量和阻尼系数协同自适应控制策略[J]. 电力自动化设备,2019,39(3):125-131. [48] PENG J L,MENG J H,WANG Y,et al.Research on virtual synchronous generator control strategy based on the battery state of charge[C]//2019 IEEE Innovative Smart Grid Technologies-Asia(ISGT Asia). Chengdu,China.IEEE,2019:2016-2020. [49] ZHANG H B,ZHU H Y,ZHANG Z,et al.Adaptive inertia control for virtual synchronous generators to enhance response performance of a wind-solar-storage combined power generation system[J]. CSEE Journal of Power and Energy Systems,2025,11(3):1358-1369. [50] CHEN L,YOU X Y,LI Z Q,et al.Optimal impedance reshaping approach for inhibiting subsynchronous oscillation in virtual synchronous generator based on SMES-battery[J]. IEEE Transactions on Applied Superconductivity,2024,34(8):3801406. |