湖南电力 ›› 2022, Vol. 42 ›› Issue (6): 7-14.doi: 10.3969/j.issn.1008-0198.2022.06.002

• 电力防灾减灾专栏 • 上一篇    下一篇

基于改进天鹰算法优化核极限学习机的油浸式变压器故障诊断研究

易灵芝1,2, 龙娇1, 王雅慧3, 黄健雄1, 孙涛1, 余煌1, 禹果1   

  1. 1.湘潭大学自动化与电子信息学院,湖南 湘潭 411105;
    2.湖南省多能源协同控制技术工程研究中心,湖南 湘潭 411105;
    3.湖南大学电气与信息工程学院,湖南 长沙 410082
  • 收稿日期:2022-10-27 出版日期:2022-12-25 发布日期:2023-01-13
  • 基金资助:
    国家自然科学基金(61572416);国网输变电设备防灾减灾国家重点实验室开放课题(16218B-9000000-5000)

Fault Diagnosis Study of Oil-Immersed Transformers of Optimized Kernel Based Extreme Learning Machine Based on Modified Aquila Optimizer

YI Lingzhi1,2, LONG Jiao1, WANG Yahui3, HUANG Jianxiong1, SUN Tao1, YU Huang1, YU Guo1   

  1. 1. College of Information Engineering, Xiangtan University, Xiangtan, 411105, China;
    2. Hunan Engineering Research Center of Multi-Energy Cooperative Control Technology, Xiangtan 411105, China;
    3. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
  • Received:2022-10-27 Online:2022-12-25 Published:2023-01-13

摘要: 为提高油浸式电力变压器故障诊断的精度及可靠性,提出了一种基于改进天鹰算法(modified aquila optimizer,MAO)优化核极限学习机(kernel based extreme learning machine,KELM)的油浸式电力变压器故障诊断方法。利用Tent混沌映射、卡方概率密度函数,对原始天鹰优化算法(Aquila Optimizer,AO)进行改进,改进后的算法有效提升了收敛速度与寻优精度。利用MAO算法对核极限学习机模型中的正则化系数和核函数参数进行联合寻优,构建最优故障诊断模型。实验结果显示,MAO-KELM对变压器故障诊断的准确率达到95.8%,比AO、GWO和PSO优化的核极限学习机故障诊断模型分别提升了3.52%、10.07%和11.64%,体现了MAO算法的优越性,同时与传统模型进行比较,证明所提方法的诊断效果具有明显优势。

关键词: 变压器, 核极限学习机, 天鹰优化算法, 故障诊断

Abstract: In order to improve the accuracy and reliability of oil-immersed power transformer fault diagnosis, an oil-immersed power transformer fault diagnosis method of optimized kernel based extreme learning machine (KELM)based on the modified aquila optimizer (MAO)is proposed in this paper. The original aquila optimizer (AO) is improved by using Tent chaotic mapping and cardinality probability density function, and the improved algorithm effectively improves the convergence speed and the accuracy of the optimization search.The optimal fault diagnosis model is constructed by jointly seeking the regularization coefficients and kernel function parameters in the KELM using the MAO algorithm. The experimental results show that the accuracy of MAO-KELM for transformer fault diagnosis reaches 95.8%, which is 3.52%, 10.07% and 11.64% higher than the optimized KELM fault diagnosis models of AO, GWO and PSO respectively, reflecting the superiority of the MAO algorithm,and comparing with the traditional model, the proposed method has obvious advantages in its diagnosis effect.

Key words: transformer, kernel based extreme learning machine(KELM), aquila optimizer(AO), fault diagnosis

中图分类号: