[1] 刘文清,易衍孜,陈小惠,等. 基于云平台的人脸识别在机房监控中的应用[J].湖南电力,2021,41(1): 52-55. [2] 梁琼,汤奕雄,李弘运,等. 通信故障智能研判系统的设计与实现[J].湖南电力,2021,41(2): 46-48,64. [3] 陈兴新,岳一石,程紫熠,等. 基于XGBoost算法的绝缘子污秽放电在线诊断方法研究[J].湖南电力,2021,41(2): 36-40. [4] 唐明珠,赵琪,龙文,等. 基于梯度提升决策树的风电机组齿轮箱故障检测[J].湖南电力,2019,39(6): 52-56,60. [5] 陈剑刚,姚璞,杨俊武,等. 无人机在架空输电线路巡检中的应用研究[J].湖南电力,2019,39(5): 74-77. [6] 侯春萍,章衡光,张巍,等. 输电线路绝缘子自爆缺陷识别方法[J].电力系统及其自动化学报,2019,31(6): 1-6. [7] REN S,HE K,GIRSHICK R, et al. Faster R-CNN : towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6): 1137-1149. [8] 蒋姗,孙渊,严道森.基于深度学习算法的航拍巡检图像的绝缘子识别[J].福州大学学报(自然科学版),2021,49(1): 58-64. [9] Navaneeth Bodla,Bharat Singh, Rama Chellappa,et al.Soft-NMS Improving Object Detection With One Line of Code[EB/OL].(2017-04-05)[2021-11-28].https://arxiv.org/pdf/1704.04503v2.pdf. [10] 周自强,赵淳,范鹏.基于多尺度特征融合Faster R-CNN的绝缘子自爆缺陷研究[J].水电能源科学,2020,38(11): 187-189,44. [11] 易继禹,陈慈发,龚国强.基于改进Faster RCNN的输电线路航拍绝缘子检测[J].计算机工程.2021,47(6): 292-208,304. [12] LIU Songtao,DI HUANG,WANG Yunhong. Learning Spatial Fusion for Single-Shot Object Detection[EB/OL].(2019-11-21)[2021-11-28]. https://arxiv.org/pdf/1911.09516.pdf. [13] PANG J, CHEN K, SHI J, et al. Libra R-CNN: Towards Balanced Learning for Object Detection[EB/OL].(2019-06-20)[2021-11-28].https://arxiv.org/pdf/1904.02701.pdf. [14] SAURABH Singh, SHANKAR Krishnan.Filter Response Normalization Layer: Eliminating Batch Dependence in the Training of Deep Neural Networks[EB/OL].(2019-11-09)[2021-11-28].https://arxiv.org/pdf/1911.09737.pdf. [15] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[EB/OL].(2015-02-13)[2021-11-28].https://arxiv.org/pdf/1502.03167.pdf. [16] HAMID Rezatofighi, NATHAN Tsoi, JunYoung Gwak,et al. Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression[EB/OL].(2019-11-19)[2021-11-28].https://arxiv.org/pdf/1911.08287.pdf. [17] WUYuxin,HE Kaiming. Group Normalization[EB/OL].(2018-02-24)[2021-11-28]. https://arxiv.org/pdf/1803.08494v3.pdf. [18] HU Jie , LI Shen, GABG Sun.Squeeze-and-Excitation Networks[EB/OL].(2018-10-25)[2021-11-28].https://arxiv.org/pdf/1709.01507v4.pdf. [19] REDMON J, FARHAD A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2017,6517-6525. [20] REDMON J,FARHADI A. YOLOv3: an incremental improvement[EB/OL].(2018-04-23)[2021-11-28].https://arxiv.org/pdf/1804.02767.pdf. |