[1] 周浪雅,王亦乐,谢余晨,等.站城融合背景下高速铁路综合枢纽短时客流预测研究[J].铁道学报,2023,45(4):1-7. [2] QI L F,PAN H Y,PAN Y J,et al.A review of vibration energy harvesting in rail transportation field[J]. iScience, 2022,25(3):103849. [3] 侯秀芳,冯晨,燕汉民,等.2023年中国内地城市轨道交通运营线路概况[J].都市快轨交通,2024, 37(1):10-16. [4] 李志强,胡海涛,陈俊宇,等.城轨交通混合型再生制动能量利用系统及其控制策略[J].电力自动化设备,2023,43(11):1-14. [5] 沈小军,曹戈.城轨交通制动能量回收超级电容储能阵列配置方法对比分析[J].电工技术学报, 2020,35(23):4988-4997. [6] 郑文奇.城市轨道交通车载混合储能系统的控制策略及容量优化配置研究[D].南昌:华东交通大学,2020. [7] KHODAPARASTAN M, MOHAMED A A, BRANDAUER W. Recuperation of regenerative braking energy in electric rail transit systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2831-2847. [8] 章宝歌,李萍,张振,等.应用于城轨列车混合储能系统的能量管理策略[J].储能科学与技术,2020, 9(1):204-210. [9] 朱志强,王欣,秦斌.城市轨道交通供电-牵引-混合储能系统设计与仿真[J].湖南电力,2024, 44(1):24-31. [10] WANG X,LUO Y B,QIN B, et al. Power dynamic allocation strategy for urban rail hybrid energy storage system based on iterative learning control [J]. Energy, 2022, 245: 123263. [11] 杨浩丰,刘冲,李彬,等.基于列车运行工况的城轨地面式混合储能系统控制策略研究[J].电工技术学报,2021,36(S1):168-178. [12] LANCTOT M, LOCKHART E, LESPIAU J B, et al. Openspiel: a framework for reinforcement learning in games[EB/OL].[ 2020-09-29].https://arxiv.org/abs/1908.09453. [13] LEVINE S, FINN C, DARRELL T, et al. End-to-end training of deep visuomotor policies[J]. The Journal of Machine Learning Research, 2016, 17(1): 1334-1373. [14] YANG Z, ZHU F, LIN F. Deep-reinforcement-learning-based energy management strategy for supercapacitor energy storage systems in urban rail transit [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1150-1160. [15] ABDELHEDI R,LAHYANI A,AMMARI A C,et al.Reinforcement learning-based power sharing between batteries and supercapacitors in electric vehicles[C] //2018 IEEE International Conference on Industrial Technology (ICIT).Lyon,France.IEEE,2018:2072-2077. [16] FUJIMOTO S,VAN HOOF H,MEGER D.Addressing function approximation error in actor-critic methods [C] //35th International Conference on Machine Learning,Stockholm,Sweden.PMLR,2018,80:1587-1596 . [17] WANG X,LUO Y,QIN B,et al.Power allocation strategy for urban rail hess based on deep reinforcement learning sequential decision optimization[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2693-2710. [18] HAARNOJA T,ZHOU A,HARTIKAINEN K,et al.Soft actor-critic algorithms and applications[EB/OL].[2019-01-29].https://arxiv.org/pdf/1812.05905/1000. [19] HAARNOJA T,ZHOU A,ABBEEL P,et al.Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor[C] //35th International Conference on Machine Learning,Stockholm,Sweden.PMLR,2018,80:1861-1870. |