[1] GENG S J,WANG X L.Predictive maintenance scheduling for multiple power equipment based on data-driven fault prediction[J]. Computers & Industrial Engineering,2022,164:107898. [2] 叶俊,邱志斌,杨泽鼎,等. 基于多特征融合的输电通道山火识别方法[J]. 湖南电力,2024,44(3):9-14. [3] 黄悦华,陈照源,陈庆,等. 基于边缘计算和改进YOLOv5s算法的输电线路故障实时检测方法[J]. 电力建设,2023,44(1):91-99. [4] 文博,李家熙,文明,等. 基于电力数据的碳排放组合预测方法研究[J]. 湖南电力,2024,44(2):134-140. [5] 魏业文,李梅,解园琳,等. 基于改进Faster-RCNN的输电线路巡检图像检测[J]. 电力工程技术,2022,41(2):171-178. [6] 赵振兵,蒋志钢,李延旭,等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报,2021,26(11):2545-2560. [7] PARK H,NOH J,HAM B.Learning memory-guided normality for anomaly detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle,WA,USA.IEEE,2020:14360-14369. [8] XIANG T G,ZHANG Y X,LU Y Y,et al.Squid:deep feature inpainting for unsupervised anomaly detection[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Vancouver,BC,Canada.IEEE,2023:23890-23901. [9] QIU C,PFROMMER T,KLOFT M,et al.Neural transformation learning for deep anomaly detection beyond images[C]//38th International Conference on Machine Learning. PMLR, 2021:8703-8714. [10] PANG G S,SHEN C H,CAO L B,et al.Deep learning for anomaly detection[J]. ACM Computing Surveys,2022,54(2):1-38. [11] ZHOU X K,LIANG W,SHIMIZU S,et al.Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems[J]. IEEE Transactions on Industrial Informatics,2021,17(8):5790-5798. [12] COHEN N,HOSIDENKO M,BERGMAN A,et al.Sub-Image anomaly detection with deep pyramid correspondences[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE,2020:670-678. [13] RADFORD A,KIM J W,HALLACY C,et al.Learning transferable visual models from natural language supervision[C]//38th International Conference on Machine Learning (ICML). 2021:8748-8763. [14] JIA C,YANG Y,XIA Y,et al.Scaling up visual and vision-language representation learning with noisy text supervision[C]//38th International Conference on Machine Learning (ICML). 2021:4904-4916. [15] YANG H Y,SILBERER C.Are visual-linguistic models commonsense knowledge bases[C]//29th International Conference on Computational Linguistics.Gyeongju,Republic of Korea. 2022:5542-5559. [16] ALAYRAC J B,DONAHUE J,LUC P,et al.Flamingo:a visual language model for few-shot learning[C]//36th International Conference on Neural Information Processing Systems.New Orleans,LA,USA.NIPS'22,2022:23716-23736. [17] MOLĘDA M,MAŁYSIAK-MROZEK B,DING W D,et al. From corrective to predictive maintenance-a review of maintenance approaches for the power industry[J]. Sensors,2023,23(13):5970. [18] HUSSAIN M,ZHANG T L,SEEMA M.Adoption of big data analytics for energy pipeline condition assessment-A systematic review[J]. International Journal of Pressure Vessels and Piping,2023,206:105061. [19] AKBAR S,VAIMANN T,ASAD B,et al.State-of-the-art techniques for fault diagnosis in electrical machines:advancements and future directions[J]. Energies,2023,16(17):6345. [20] YUAN Y G,WEI J N,HUANG H S,et al.Review of resampling techniques for the treatment of imbalanced industrial data classification in equipment condition monitoring[J]. Engineering Applications of Artificial Intelligence, 2023,126:106911. [21] RIZEAKOS V,BACHOUMIS A,ANDRIOPOULOS N,et al.Deep learning-based application for fault location identification and type classification in active distribution grids[J]. Applied Energy,2023,338:120932. [22] ZHU Z Q,LEI Y B,QI G Q,et al.A review of the application of deep learning in intelligent fault diagnosis of rotating machinery[J]. Measurement,2023,206:112346. [23] LI A,CHEN Q,KLOFT M,et al.Zero-shot anomaly detection via batch normalization[C]//37th International Conference on Neural Information Processing Systems.New Orleans,LA,USA.2023:40963-40993. [24] LI Y T,DAVID A G,LIU F Y,et al.PromptAD:zero-shot anomaly detection using text prompts[C]//2024 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV). Waikoloa,HI,USA.IEEE,2024:1082-1091. [25] AOTA T,TONG L T T,OKATANI T. Zero-shot versus many-shot:unsupervised texture anomaly detection[C]//2023 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV). Waikoloa,HI,USA.IEEE,2023:5553-5561. [26] ZHU J W,PANG G S.Toward generalist anomaly detection via in-context residual learning with few-shot sample prompts[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA.IEEE,2024:17826-17836. [27] DEFARD T,SETKOV A,LOESCH A,et al.PaDiM:A patch distribution modeling framework for anomaly detection and localization[M]//Lecture Notes in Computer Science.Cham:Springer International Publishing,2021:475-489. |