[l] 陈浩文,刘文霞,李月乔. 基于奇异谱分析与神经网络的中期负荷预测[J]. 电网技术,2020,44(4):1333-1347. [2] 郭蕴颖,丁云峰. 基于CNN和LSTM联合预测并修正的电量缺失数据预测[J]. 计算机系统应用,2020,29(8):192-198. [3] ZHAN X H,KOU L,XUE M T,et al.Reliable long-term energy load trend prediction model for smart grid using hierarchical decomposition self-attention network[J]. IEEE Transactions on Reliability,2023,72(2):609-621. [4] 孙景钌,胡长洪,项烨鋆,等. 基于多核模糊C均值聚类的配电网短期负荷预测[J]. 浙江电力,2022,41(3):65-71. [5] WANG K J,QI X,LIU H D,et al.Deep belief network based k-means cluster approach for short-term wind power forecasting[J]. Energy,2018,165:840-852. [6] GHASVARIAN JAHROMI K,GHARAVIAN D,MAHDIANI H.A novel method for day-ahead solar power prediction based on hidden Markov model and cosine similarity[J]. Soft Computing,2020,24(7):4991-5004. [7] 杨柳,吴延琳,张超,等. 改进最小二乘支持向量机电量预测算法[J]. 电网与清洁能源,2017,33(3):71-76. [8] DONG Y X,MA S D,ZHANG H C,et al.Wind power prediction based on multi-class autoregressive moving average model with logistic function[J]. Journal of Modern Power Systems and Clean Energy,2022,10(5):1184-1193. [9] 程宇也. 基于人工神经网络的短期电力负荷预测研究[D].杭州:浙江大学,2017. [10] 陈亮,王震,王刚. 深度学习框架下LSTM网络在短期电力负荷预测中的应用[J]. 电力信息与通信技术,2017,15(5):8-11. [11] ZHOU X,PANG C X,ZENG X H,et al.A short-term power prediction method based on temporal convolutional network in virtual power plant photovoltaic system[J]. IEEE Transactions on Instrumentation and Measurement,2023,72:9003810. [12] LIU X Y,ZHANG Y R,ZHEN Z,et al.Spatio-temporal graph neural network and pattern prediction based ultra-short-term power forecasting of wind farm cluster[J]. IEEE Transactions on Industry Applications,2024,60(1):1794-1803. [13] 朱凌建,荀子涵,王裕鑫,等. 基于CNN-Bi LSTM的短期电力负荷预测[J]. 电网技术,2021,45(11):4532-4539. [14] 赵兵,王增平,纪维佳,等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术,2019,43(12): 4370-4376. [15] 任爽,杨凯,商继财,等. 基于CNN-BiGRU-Attention的短期电力负荷预测[J]. 电气工程学报,2024,19(1):344-350. [16] YANG W Z,CHEN B,SHEN Y J,et al.WaveCNNs-AT:Wavelet-based deep CNNs of adaptive threshold for signal recognition[J]. Applied Intelligence,2023,53(23):28819-28831. [17] LI Q F,SHEN L L,GUO S,et al.WaveCNet:wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification[J]. IEEE Transactions on Image Processin,2021,30:7074-7089. [18] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [19] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J]. Neural Computation,1997,9:1735-1780. [20] ZHANG R. Making convolutional networks shift-invariant again[C]//International conference on machine learning.PMLR,2019:7324-7334. |