[1] 赵振兵,蒋志钢,李延旭,等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报,2021,26(11):2545-2560. [2] 夏云峰,宋新明,贾志东,等. 基于巡线机器人的输电线路状态检修技术研究现状与展望[J]. 高压电器,2018,54(7):53-63. [3] 郝艳捧,梁苇,潘锐健,等. 输电线路智能带电检修关键技术研究综述[J]. 电力自动化设备,2022,42(2):163-175. [4] 刘传洋,吴一全. 基于深度学习的输电线路视觉检测方法研究进展[J]. 中国电机工程学报,2023,43(19):7423-7446. [5] POULIOT N,RICHARD P L,MONTAMBAULT S.LineScout tech-nology opens the way to robotic inspection and maintenance of high-voltage power lines[J]. IEEE Power and Energy Technology Systems Journal,2015,2(1):1-11. [6] KALAN H,MALAYJERD M,DEHNAVI M H.H2M robot: a new prototype robot for insulation of high voltage transmission[J]. International Journal of Intelligent Robotics and Applications,2019,3(1):87-98. [7] JALAL M F A,SAHAR K S M,FEI H M,et al. Design and development of three arms transmission line inspection robot[J]. Journal of Robotics,Networking and Artificial Life,2018,5(3):157. [8] 汤明文,戴礼豪,林朝辉,等. 无人机在电力线路巡视中的应用[J]. 中国电力,2013,46(3):35-38. [9] LING Z N,ZHANG D X,QIU R C,et al.An accurate and real-time method of self-blast glass insulator location based on faster R-CNN and U-Net with aerial images[J]. CSEE Journal of Power and Energy Systems,2019,5(4):474-482. [10] 白洁音,赵瑞,谷丰强,等. 多目标检测和故障识别图像处理方法[J]. 高电压技术,2019,45(11):3504-3511. [11] 李雪峰,刘海莹,刘高华,等. 基于深度学习的输电线路销钉缺陷检测[J]. 电网技术,2021,45(8):2988-2995. [12] TAO X,ZHANG D P,WANG Z H,et al.Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,50(4):1486-1498. [13] 王健,王凯,刘刚,等. 基于生成对抗网络和RetinaNet的销钉缺陷识别[J]. 华南理工大学学报(自然科学版),2020,48(2):1-8. [14] 张永翔,吴功平,刘中云,等. 基于YOLOv3网络的输电线路防震锤和线夹检测迁移学习[J]. 计算机应用,2020,40(S2):188-194. [15] 赵振兵,王帆帆,刘良帅,等. 基于注意力特征融合YOLOv5模型的无人机输电线路航拍图像金具检测方法[J]. 电测与仪表,2023,60(3):145-152. [16] 郝帅,杨磊,马旭,等. 基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测[J]. 中国电机工程学报,2023,43(6):2319-2330. [17] QIU Z B,ZHU X,LIAO C B,et al.Detection of transmission line insulator defects based on an improved lightweight YOLOv4 model[J]. Applied Sciences,2022,12(3):1207. [18] 徐昊. 基于机器视觉的输电线路小目标检测和缺陷识别方法研究[D]. 杭州:浙江大学,2022. [19] BOCHKOVSKIY A,WANG C Y,LIAO H Y M. YOLOv4:optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2024-09-10].https://arxiv.org/abs/2004.10934v1. [20] PELLGE D,MOORE A.Accelerating exact k-means algorithms with geometric reasoning[C]//Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining. San Diego California USA. ACM,1999:277-281. [21] ARTHUR D,VASSILVITSKII S.K-Means++:the advantages of careful seeding[C]//Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms.New Orleans,Louisiana,USA.ACM,2007. [22] ESTER M,KRIEGEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//National Conferences on Aritificial Intelligence. 1996,96(34):226-231. [23] TANG Y H,HAN K,GUO J Y,et al. GhostNetV2:enhance cheap operation with long-range attention[EB/OL]. (2022-11-23)[2024-09-10]. https://arxiv.org/abs/2211.12905v1. [24] SUNKARA R,LUO T. No more strided convolutions or pooling:a new CNN building block for low-resolution images and small objects[EB/OL].(2022-08-07)[2024-09-10]. https://arxiv.org/abs/2208.03641v1. [25] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision(ICCV). Venice. IEEE,2017:2980-2988. [26] ZHU P F,WEN L Y,DU D W,et al.Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(11):7380-7399. [27] 李钟华,林初俊,朱恒亮,等. 基于结构感知和全局上下文信息的小目标检测[J]. 计算机工程与应用,2024,60(9):292-298. [28] 陈卫彪,贾小军,朱响斌,等. 基于DSM-YOLO v5的无人机航拍图像目标检测[J]. 计算机工程与应用,2023,59(18):226-233. |