[1] 国家能源局.国家能源局发布2024年全国电力工业统计数据[EB/OL].(2025-01-21)[2025-02-14]. http://www.nea.gov.cn/20250121/097bfd7c1cd3498897639857d86d5dac/c.html. [2] Global Wind Energy Council. Global wind report2023[R/OL]. (2023-05-27)[2025-02-24]. https://gwec.net/globalwindreport2023. [3] TELSNIG T.Wind energy technology development report 2020[R]. Publications Office of the European Union,2021. [4] 詹长江,吴恒,王雄飞,等. 构网型变流器稳定性研究综述[J]. 中国电机工程学报,2023,43(6):2339-2359. [5] 赵炳洋,赵波,张芳,等. 构网型逆变器技术综述[J]. 北京信息科技大学学报(自然科学版),2022,37(4):57-67. [6] LIU J L,LOU Y Y,LIU X M,et al.Study on offshore wind power converter modeling and power stability improvement[C]//2023 3rd International Conference on Energy Engineering and Power Systems(EEPS). Dali,China. IEEE,2023:713-718. [7] 许诘翊,刘威,刘树,等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术,2022,46(9):3586-3594. [8] 韩应生,孙海顺,秦世耀,等. 电压源型双馈风电并网系统小扰动低频稳定性分析[J]. 电工技术学报,2023,38(5):1312-1324,1374. [9] 张澳,代林旺,马政阳,等. 电压源型双馈风电机组次同步振荡抑制方法[J].电气传动,2022,52(23):11-17,27. [10] ORAA I,SAMANES J,LOPEZ J,et al.Single-loop droop control strategy for a grid-connected DFIG wind turbine[J]. IEEE Transactions on Industrial Electronics,2024,71(8):8819-8830. [11] HAN Y S,HA J I.Droop control using impedance of grid-integrated DFIG within microgrid[J]. IEEE Transactions on Energy Conversion,2019,34(1):88-97. [12] QI C,QIN S Y,MIAO F L,et al.Test and assessment of grid forming wind turbine based on controller hardware-in-the-loop[C]//2021 IEEE 5th Conference on Energy Internet and Energy System Integration(EI2). Taiyuan,China. IEEE,2021:2718-2723. [13] 翟文辉,段青熙,徐志. 国内完成首次构网型风电场电磁暂态仿真测试[N]. 中国电力报,2023-04-12(002). [14] TARRASÓ A,LAI N B,VERDUGO C,et al.Design of controller for virtual synchronous power plant[J]. IEEE Transactions on Industry Applications,2021,57:4033-4041. [15] 程雪坤,刘辉,田云峰,等. 基于虚拟同步控制的双馈风电并网系统暂态功角稳定研究综述与展望[J]. 电网技术,2021,45(2):518-525. [16] 李蕴红,刘芳,刘威,等. VSG-DFIG风力发电系统小信号建模及稳定性分析[J]. 电源学报,2020,18(2):73-82. [17] GLASSMIRE J,CHEREVATSKIY S,ANTONOVA G,et al.Using virtual synchronous generators to resolve microgrid protection challenges?[C]//2021 74th Conference for Protective Relay Engineers(CPRE). College Station,TX,USA. IEEE,2021:1-7. [18] STANOJEV O,MARKOVIC U,ARISTIDOU P,et al.MPC-based fast frequency control of voltage source converters in low-inertia power systems[J]. IEEE Transactions on Power Systems,2022,37(4):3209-3220. [19] YAN S M,GAO X J,LU Y H,et al.Study on single-loop FCS-MPC for DC-based DFIG system[J]. IEEE Access,2023,11:54006-54016. [20] 刘硕,李佳远,马速良,等. 弱电网下多源构网型变流器协同控制方法[J]. 热力发电,2024,53(8):85-93,104. [21] NGUYEN T T,VU T, PAUDYAL S,et al. Grid-forming inverter-based wind turbine generators:comprehensive review,comparative analysis,and recommendations[EB/OL].(2022-05-04)[2025-02-24]. https://doi.org/10.48550/arXiv.2203.02105. [22] AVAZOV A,COLAS F,BEERTEN J,et al.Damping of torsional vibrations in a type-IV wind turbine interfaced to a grid-forming converter[C]//2021 IEEE Madrid Power Tech. Madrid,Spain. IEEE,2021:1-6. [23] 桑顺,齐琛,张新松,等. 永磁直驱风电机组的构网型控制与黑启动[J]. 电网技术,2022,46(8):3168-3180. [24] NGUYEN X H,NAKAJIMA T,OTA Y.Droop-based grid-forming function by type IV wind farm for fast frequency control[C]//2021 IEEE PES Innovative Smart Grid Technologies-Asia(ISGT Asia). Brisbane,Australia. IEEE,2021:1-5. [25] XI J B,GENG H.Decoupling control scheme for VSG-WPPs to participate in grid frequency response[J]. IEEE Transactions on Industry Applications,2019,55(6):6368-6375. [26] 高本锋,邓鹏程,孙大卫,等. 基于匹配控制的构网型直驱风电场次同步振荡机理与特性研究[J]. 电工技术学报,2024,39(9):2755-2770. [27] YANG R X,SHI G,CAI X,et al.Autonomous synchronizing and frequency response control of multi-terminal DC systems with wind farm integration[J]. IEEE Transactions on Sustainable Energy,2020,11(4):2504-2514. [28] SANG S,ZHANG C,CAI X,et al.Control of a type-IV wind turbine with the capability of robust grid-synchronization and inertial response for weak grid stable operation[J]. IEEE Access,2019,7:58553-58569. [29] QORIA T,GRUSON F,COLAS F,et al.Critical clearing time determination and enhancement of grid-forming converters embedding virtual impedance as current limitation algorithm[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2020,8(2):1050-1061. [30] QIN Y,WANG H,DENG Z Y,et al.Control of inertia-synchronization controlled wind turbine generators under symmetrical grid faults[J]. IEEE Transactions on Energy Conversion,2022,38(2):1085-1096. [31] GONZÁLEZ-CAJIGAS A,BUENO E J,ROLDÁN-PÉREZ J,et al. Control choices to allow the parallel operation of grid-forming type-III wind turbines[J]. IEEE Transactions on Power Electronics,2023,38(12):15353-15364. [32] 王灿林,章德,朱思睿,等. 构网型柔性直流输电系统附加阻尼控制器设计[J]. 湖南电力,2024,44(2):68-76. [33] AGRAWAL S,TYAGI B,KUMAR V,et al.Enhancing grid stability through adaptive damping and inertia control in DFIG-based wind turbines with VSync[C]//2023 IEEE International Conference on Energy Technologies for Future Grids(ETFG). Wollongong,Australia. IEEE,2023:1-5. [34] ZHANG Z Y,ZHUANG Y,ZHA X B,et al.Stability analysis of doubly-fed wind generation systems under weak power grid based on virtual synchronous control combined with adaptive robust control[J]. Energy Reports,2022,8:46-56. [35] LI Z,XIE Z,ZHANG X.An improved strategy of grid-forming DFIG based on disturbance rejection stator flux control[J]. IEEE Transactions on Industrial Electronics, 2024,71(3):2498-2509. [36] OUYANG J X,TANG T,YAO J,et al.Active voltage control for DFIG-based wind farm integrated power system by coordinating active and reactive powers under wind speed variations[J]. IEEE Transactions on Energy Conversion, 2019,34(3):1504-1511. [37] 陈燕东,裴欣欣,符有泽,等. 构网型逆变器与SVG并联系统无功功率协调控制策略[J]. 湖南电力,2024,44(2):112-121. [38] KONG X B,WANG X,ABDELBAKY M A,et al.Nonlinear MPC for DFIG-based wind power generation under unbalanced grid conditions[J]. International Journal of Electrical Power & Energy Systems,2022,134:107416. [39] OSHNOEI A,BLAABJERG F.Sliding mode-based model predictive control of grid-forming power converters[C]//2023 European Control Conference(ECC). Bucharest,Romania. IEEE,2023:1-6. [40] DANG H P,PICO H N V. Blackstart and fault ride-through capability of DFIG-based wind turbines[C]//2023 IEEE Power & Energy Society General Meeting(PESGM). Orlando,FL,USA. IEEE,2023:1-15. [41] GANTHIA B P,BARIK S K.Fault analysis of PI and fuzzy-logic-controlled DFIG-based grid-connected wind energy conversion system[J]. Journal of the Institution of Engineers(India):Series B,2022,103(2):415-437. [42] LI C Y,HUANG Y Z,DENG H Y,et al.Comparison on frequency stability of high inverter penetration power system with different grid-forming controls[C]//2022 International Conference on Power Energy Systems and Applications(ICoPESA). Singapore,Singapore. IEEE,2022:374-380. [43] 张建良,齐冬莲,孙平远. 一种基于PMSG风机的系统惯性支持级联控制方法:CN109995077A[P].2019-07-09. [44] TUO M J,LI X P.Optimal allocation of virtual inertia devices for enhancing frequency stability in low-inertia power systems?[C]//2021 North American Power Symposium(NAPS). College Station,TX,USA. IEEE,2021:1-6. [45] D′ARCO S,SUUL J A. Improving the power reference tracking of virtual synchronous machines by feed-forward control[C]//2021 IEEE 19th International Power Electronics and Motion Control Conference(PEMC). Gliwice,Poland. IEEE,2021:102-107. [46] BERRUETA A,SACRISTÁN J,LÓPEZ J,et al. Inclusion of a supercapacitor energy storage system in DFIG and full-converter PMSG wind turbines for inertia emulation[J]. IEEE Transactions on Industry Applications,2023,59:3754-3763. [47] DAI T T,XIAO X Y,XIE Q,et al.Hybrid grid-forming and grid following PMSG-SMES architecture with enhanced FRT capability[J]. IEEE Transactions on Applied Superconductivity,2024,34:1-4. [48] ROKROK E,QORIA T,BRUYERE A,et al.Classification and dynamic assessment of droop-based grid-forming control schemes:application in HVDC systems[J]. Electric Power Systems Research,2020,189:106765. [49] EGGERS M,DIECKERHOFF S.Low-inertia grid-forming control with large phase angle jump capability for converters with small energy storage[C]//2021 IEEE 22nd Workshop on Control and Modelling of Power Electronics(COMPEL). Cartagena,Colombia. IEEE,2021:1-6. [50] CHEN L,BLAABJERG F.Virtual synchronous generator based on type-IV wind turbine with supercapacitor as storage[C]//2021 IEEE/IAS Industrial and Commercial Power System Asia(I&CPS Asia). Chengdu,China. IEEE,2021:1194-1200. [51] ZHANG J W,ZHANG C,SHI X Q,et al.A novel energy-type SVG with grid forming control for grid voltage and inertial support[C]//2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems(PEDG). Shanghai,China. IEEE,2023:821-828. [52] CHEN M,ZHOU D,BLAABJERG F. Multivariable grid-forming converters with direct states control[J]. IEEE Transactions on Industry Applications,2023,59(4):4334-4341. [53] ZENG Z J,CHEN D W,QIN S Y,et al.A model predictive control with grid-forming capability for back-to-back converters in wind turbine systems[J]. IEEE Open Journal of Power Electronics,2024,(5):1697-1708. |