[1] 张利生. 电力网电能损耗管理及降损技术:2版[M]. 北京:中国电力出版社,2008. [2] 林振智,崔雪原,金伟超,等. 用户侧窃电检测关键技术[J]. 电力系统自动化,2022,46(5):188-199. [3] PUNMIYA R,CHOE S.Energy theft detection using gradient boosting theft detector with feature engineering-based prepro-cessing[J]. IEEE Transactions on Smart Grid,2019,10(2):2326-2329. [4] RAZAVI R,GHARIPOUR A,FLEURY M,et al.A practical feature-engineering framework for electricity theft detection in smart grids[J]. Applied Energy,2019,238:481-494. [5] 游文霞,申坤,杨楠,等. 基于Bagging异质集成学习的窃电检测[J]. 电力系统自动化,2021,45(2):105-113. [6] MONEDERO I,BISCARRI F,LEÓN C,et al. Detection of frauds and other non-technical losses in a power utility using Pearson coefficient,Bayesian networks and decision trees[J]. International Journal of Electrical Power & Energy Systems,2012,34(1):90-98. [7] YAP K S,TIONG S K,NAGI J,et al.Comparison of supervised learning techniques for non-technical loss detection in power utili-ty[J].International Review on Computers and Software,2012,7(2):626-636. [8] NAGI J,YAP K S,TIONG S K,et al.Nontechnical loss detection for metered customers in power utility using support vector machines[J]. IEEE Transactions on Power Delivery,2010,25(2):1162-1171. [9] JOKAR P,ARIANPOO N,LEUNG V C M. Electricity theft detection in AMI using customers′ consumption patterns[J]. IEEE Transactions on Smart Grid,2016,7(1):216-226. [10] 刘增明. 供电企业防窃电方法和对策的研究[D]. 北京:华北电力大学,2013. [11] 张承智,肖先勇,郑子萱. 基于实值深度置信网络的用户侧窃电行为检测[J]. 电网技术,2019,43(3):1083-1091. [12] 杨挺,徐嘉成,叶芷杉,等. 基于最优变换关联因子和优化平移分裂法的窃电检测[J]. 电网技术,2023,47(9):3913-3924. [13] NAGI J,YAP K S,TIONG S K,et al.Improving SVM-based nontechnical loss detection in power utility using the fuzzy inference system[J].IEEE Transactions on Power Delivery,2011,26(2):1284-1285. [14] ZANETTI M,JAMHOUR E,PELLENZ M,et al.A tunable fraud detection system for advanced metering infrastructure using short-lived patterns[J]. IEEE Transactions on Smart grid,2019,10(1):830-840. [15] 胡天宇,郭庆来,孙宏斌. 基于堆叠去相关自编码器和支持向量机的窃电检测[J]. 电力系统自动化,2019,43(1):119-125. [16] ANGELOS E W S,SAAVEDRA O R,CORTÉS O A C,et al. Detection and identification of abnormalities in customer consumptions in power distribution systems[J]. IEEE Trans actions Power Delivery,2011,26(4):2436-2442. [17] PASSOS L A JR,OBA RAMOS C C,RODRIGUES D,et al. Unsupervised non-technical losses identification through optimum-path forest[J]. Electric Power Systems Research,2016,140:413-423. [18] ZHENG K D,WANG Y,CHEN Q X,et al.Electricity theft detecting based on density-clustering method[C]//2017 IEEE Innovative Smart Grid Technologies-Asia(ZISGT-Asia). Auckland,Newzealand,IEEE,2017:1-6. [19] NIZAR A H,DONG Z Y,WANG Y.Power utility nontechnical loss analysis with extreme learning machine method[J]. IEEE Transactions on Power Systems,2008,23(3):946-955. [20] 王天真,刘远,汤天浩,等. 基于相对主元分析的动态数据窗口故障检测方法[J]. 电工技术学报,2013,28(1):142-148. [21] LEE Y J,YEH Y R,WANG Y C F. Anomaly detection via online oversampling principal component analysis[J]. IEEE Transactions on Knowledge and Data Engineering,2012,25(7):1460-1470. [22] 王建元,张少锋. 基于线性判别分析和密度峰值聚类的异常用电模式检测[J]. 电力系统自动化,2022,46(5):87-98. [23] 刘敏,方义治,孙廷玺,等. 基于邻域保持嵌入-主成分分析的高压电缆状态数据异常检测及分析[J]. 科学技术与工程,2019,19(27):192-199. [24] SU H J,WU Z Y,DU Q,et al.Hyperspectral anomaly detection using collaborative representation with outlier removal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(12):5029-5038. |