[1] 中国电力企业联合会. 2024年1-6月份电力工业运行简况[R/OL]. (2024-07-31)[2024-10-14]. https://www.askci.com/news/chanye/20240731/172628272241798737481802.shtml. [2] 王佳旭,苗世洪,王廷涛,等. 考虑风电爬坡限幅及频率安全约束的高比例风电电力系统多层级优化调度[J]. 电力系统保护与控制,2025,53(1):135-146. [3] DOROSTKAR-GHAMSARI M R,FOTUHI-FIRUZABAD M,LEHTONEN M,et al. Value of distribution network reconfiguration in presence of renewable energy resources[J]. IEEE Transactions on Power Systems,2016,31(3):1879-1888. [4] RAO R S,RAVINDRA K,SATISH K,et al.Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation[J]. IEEE Transactions on Power Systems,2013,28(1):317-325. [5] CAPITANESCU F,OCHOA L F,MARGOSSIAN H,et al.Assessing the potential of network reconfiguration to improve distributed generation hosting capacity in active distribution systems[J]. IEEE Transactions on Power Systems,2015,30(1):346-356. [6] 朱正,廖清芬,刘涤尘,等. 考虑新能源与电动汽车接入下的主动配电网重构策略[J]. 电力系统自动化,2015,39(14):82-88,96. [7] 王威,韩学山,李保银. 基于机会约束规划的含风机配电网重构[J]. 电力系统及其自动化学报,2014,26(5):23-26. [8] 李扬,韦钢,马钰,等. 含电动汽车和分布式电源的主动配电网动态重构[J]. 电力系统自动化,2018,42(5):102-110. [9] 杨经纬,张宁,王毅,等. 面向可再生能源消纳的多能源系统:述评与展望[J]. 电力系统自动化,2018,42(4):11-24. [10] 朱丹丹,刘文颖,蔡万通,等. 风电消纳目标下基于电量与功率滚动优化的荷源控制方法[J]. 电力系统自动化,2018,42(5):80-85,119. [11] 黄红程. 提高多元可再生能源消纳能力的配电网重构研究 [D]. 上海:上海交通大学,2015. [12] 龚思宇,魏炜,徐元孚,等. 面向分布式电源最大消纳的配电网重构[J]. 电力系统及其自动化学报,2017,29(3):7-11,41. [13] PENG X S,CHEN Y Z,CHENG K,et al.Wind power prediction for wind farm clusters based on the multi-feature similarity matching method[C]//2019 IEEE Industry Applications Society Annual Meeting. Baltimore,MD,USA. IEEE,2019:1-11. [14] 曹宏宇,梁言贺,刘惠颖,等. 考虑风-光-储不确定性的新型电力系统概率潮流计算[J]. 电测与仪表,2024,61(6):87-93. [15] WU L,SHAHIDEHPOUR M,LI T.Stochastic security-constrained unit commitment[J]. IEEE Transactions on Power Systems,2007,22(2):800-811. [16] 何禹清,彭建春,毛丽林,等. 含多个风电机组的配电网无功优化[J]. 电力系统自动化,2010,34(19):37-41. [17] 佟忠正,孙旸子. 基于深度学习的风力发电系统自动化优化与控制系统[J]. 自动化与仪表,2024,39(8):15-19. [18] 陈春,汪沨,刘蓓,等. 基于基本环矩阵与改进和声搜索算法的配电网重构[J]. 电力系统自动化,2014,38(6):55-60. [19] ELDURSSI A M,O’CONNELL R M. A fast nondominated sorting guided genetic algorithm for multi-objective power distribution system reconfiguration problem[J]. IEEE Transactions on Power Systems,2015,30(2):593-601. [20] NGUYEN T T,NGUYEN T T,TRUONG A V,et al.Multi-objective electric distribution network reconfiguration solution using runner-root algorithm[J]. Applied Soft Computing,2017,52:93-108. [21] 廖秋萍,吕林,刘友波,等. 考虑重构的含可再生能源配电网电压控制模型与算法[J]. 电力系统自动化,2017,41(18):32-39. [22] WANG X,WANG S,LIANG X X,et al.Deep reinforcement learning:a survey[J]. IEEE Transactions on Neural Networks and Learning Systems,2024,35(4):5064-5078. [23] COELLO C A C,PULIDO G T,LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):256-279. [24] GU X L,HUANG M,LIANG X.A discrete particle swarm optimization algorithm with adaptive inertia weight for solving multiobjective flexible job-shop scheduling problem[J]. IEEE Access,2020,8:33125-33136. [25] HE S,WU Q H,SAUNDERS J R.Group search optimizer:an optimization algorithm inspired by animal searching behavior[J]. IEEE Transactions on Evolutionary Computation,2009,13(5):973-990. [26] LIAO H L,WU Q H.Multi-objective optimization by learning automata[J]. Journal of global optimization,2013,55:459-487. |