[1]韩丽,于晓娇,喻洪波,等.基于波动趋势分段的风电功率区间预测[J].电力系统自动化,2023,47(18):206-215. [2]高晓芝,郭旺,郭英军,等.基于SSA-VMD-LSTM-NKDE的短期风电功率概率预测[J].河北科技大学学报,2023,44(4):323-334. [3]昌玲,邓国安.基于LightGBM及LSTM融合的科技园区短期负荷预测[J].湖南电力,2021,41(6):31-35. [4]潘鹏程,刘晖,王仁明.自适应密度聚类组合数据清洗的LSTM风电功率预测[J/OL].电力系统及其自动化学报,1-8(2023-09-14)[2023-12-19].https://doi.org/10.19635/j.cnki.csu-epsa.001341. [5]邓立军,袁金波,刘剑,等.基于SSA-LSTM的风速异常波动检测方法[J/OL].煤炭科学技术,1-9(2023-09-08)[2023-12-19].http://kns.cnki.net/kcms/detail/11.2402.TD.20230907.1426.001.html. [6]张建中,顾冲时,袁冬阳,等.基于优化VMD与GRU的混凝土坝变形预测模型[J].水利水电科技进展,2023,43(5):38-44. [7]李柚洁,赵顺昱,杨萍,等.基于数据分解的大气污染物短期组合预测方法综述[J].环境工程,2023,41(4):213-224. [8]王业林,杨萍,李斌,等.数据分解模式下PM2.5与气态污染物的组合预测研究[J].环境科学学报,2021,41(8):3043-3050. [9]RAMOS A M,ARTILES J A P,CHAVES D P B,et al. A fragile image watermarking scheme in DWT domain using chaotic sequences and error-correcting codes[J]. Entropy, 2023,25(3): 508. [10]吴学斌,黄治,邓惟绩.基于改进变分模态分解的电缆行波故障定位研究[J].湖南电力,2021,41(3):1-6,11. [11]谢游宇,王万雄.基于EMD和SSA的股票预测模型[J].计算机工程与应用,2023,59(18):285-292. [12]晋孟雪. 基于改进VMD和深度学习的风电功率预测研究[D].西安:西安理工大学,2023. [13]李宏扬,高丙朋.基于改进VMD和SNS-Attention-GRU的短期光伏发电功率预测[J].太阳能学报,2023,44(8):292-300. [14]赵隆,温冠儒,刘志成,等.基于参数优化的VMD-SVD和LSTM的输电杆塔倾斜状态识别[J].中国电力,2023,56(12):217-226,237. [15]YAPHARY Y L, LI S F Y. Enhanced immobilization of metal pollutants in sewage sludge ash (SSA)-cement pastes by calcium chloride and nitrate: Experimental and DFT studies[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110888. [16]邓威,郭钇秀,李勇,等.基于聚类及趋势指标的长短期神经网络配网负荷短期预测[J].湖南电力,2021,41(4):27-33. [17]LIU Q, DARTEH O F, BILAL M, et al. A cloud-based Bi-directional LSTM approach to grid-connected solar PV energy forecasting for multi-energy systems[J]. Sustainable Computing: Informatics and Systems, 2023, 40: 100892. [18]李练兵,高国强,吴伟强,等.考虑特征重组与改进Transformer的风电功率短期日前预测方法[J].电网技术,2024,48(4):1466-1480. |