[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259. [2] 黎博,陈民铀,钟海旺,等.高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023,43(2):555-581. [3] CHEN M,ZHOU D,TAYYEBI A,et al.Generalized multivariable grid-forming control design for power converters[J]. IEEE Transactions on Smart Grid, 2022, 13(4): 2873-2885. [4] 詹长江, 吴恒, 王雄飞, 等. 构网型变流器稳定性研究综述[J]. 中国电机工程学报, 2023, 43(6): 2339-2359. [5] 马秀达, 卢宇, 田杰, 等. 柔性直流输电系统的构网型控制关键技术与挑战[J]. 电力系统自动化, 2023, 47(3): 1-11. [6] 辛保安, 郭铭群, 王绍武, 等. 适应大规模新能源友好送出的直流输电技术与工程实践[J]. 电力系统自动化, 2021, 45(22): 1-8. [7] ZHOU J Z, DING H, FAN S T, et al. Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a VSC-HVDC converter [J]. IEEE Transactions on Power Delivery, 2014, 29(5): 2287-2296. [8] MAHAMEDI B,FLETCHER J E. The equivalent models of grid-forming inverters in the sequence domain for the steady-state analysis of power systems[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2876-2887. [9] ROCABERT J, LUNA A, BLAABJERG F, et al. Control of power converters in AC microgrids[J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4734-4749. [10] ZHANG H, XIANG W, LIN W,et al. Grid forming converters in renewable energy sources dominated power grid: control strategy, stability, application, and challenges[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(6): 1239-1256. [11] 迟永宁, 江炳蔚, 胡家兵, 等. 构网型变流器: 物理本质与特征[J]. 高电压技术, 2024, 1(8): 1-15. [12] 黄萌, 凌扬坚, 耿华, 等. 功率同步控制的构网型变流器多机交互分析与稳定控制研究综述[J]. 高电压技术, 2023, 49(11): 4571-4583. [13] 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J].电力系统自动化, 2015, 39(21): 165-175. [14] ARGHIR C, JOUINI T, DORFLER F. Grid-forming control for power converters based on matching of synchronous machines[J]. Automatica,2018,95:273-282. [15] 郭贤珊, 刘泽洪, 李云丰, 等. 柔性直流输电系统高频振荡特性分析及抑制策略研究[J]. 中国电机工程学报, 2020, 40(1): 19-29, 370. [16] 李凌, 张野, 梁振成, 等. 模块化多电平换流器的主动谐波谐振抑制策略[J]. 广东电力, 2020, 33(3): 34-41. [17] JI K, PANG H, HE Z Y, et al. Active/Passive method-based hybrid high-frequency damping design for MMCs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(5): 6086-6098. [18] 刘会强, 雷轲, 郭裕, 等. 适用于柔性直流输电的自抗扰附加阻尼控制[J]. 黑龙江电力, 2019, 41(6): 477-482. [19] 李云丰, 贺之渊, 孔明, 等. 柔性直流输电系统高频稳定性分析及抑制策略(二): 阻尼控制抑制策略[J]. 中国电机工程学报, 2021, 41(19): 6601-6616. [20] 陈威, 汪娟娟, 叶运铭, 等. 柔性直流输电系统交流侧中高频谐振附加阻尼抑制措施[J]. 电力系统自动化, 2021, 45(18): 151-161. [21] 沈郁, 陈伟彪, 姚伟, 等. 采用新型自适应动态规划算法的柔性直流输电附加阻尼控制[J]. 电网技术, 2016, 40(12): 3768-3774. [22] ERROUISSI R, ALDURRA A,MUYEEN S M. Experimental validation of a novel PI speed controller for AC motor drives with improved transient performances[J]. IEEE Transactions on Control Systems Technology, 2018, 26(4):1414-1421. [23] LIAN S, MENG W, LIN Z, et al. Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode[J]. IEEE Transactions on Industrial Electronics,2022,69(2):1597-1607. [24] 邵冰冰, 赵书强, 高本锋, 等. 基于反馈线性化滑模控制的直驱风电场经柔直并网系统次同步振荡抑制策略[J].中国电机工程学报, 2021, 41(9): 3090-3106. [25] 徐鹏, 苏鑫, 郭铖, 等. 三相电压型PWM整流器的模型预测滑模控制[J].电气工程学报: 2023, 11(8): 58-65. [26] 赵书强, 邵冰冰, 高本锋, 等. 基于组合趋近律的VSC-HVDC滑模电流控制设计和稳定性分析[J].高电压技术, 2019, 45(11): 3603-3611. [27] 郝建红, 米昕禾, 汪筱巍. 交直流联合输电系统中HVDC的自适应全局快速Terminal滑模控制[J]. 电工技术学报, 2017, 32(11): 8-16. [28] BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on and Optimization, 2000, 38(3): 751-766. [29] 郑雪梅, 时旭, 陈鑫,等. 自同步型并网逆变器有限时间全阶终端滑模控制研究[J]. 控制理论与应用, 2023, 40(11): 1903-1910. [30] MISHRA J P, YU X, JALILI M. Arbitrary-order continuous finite-time sliding mode controller for fixed-time convergence[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(12): 1988-1992. [31] POLYAKOV A.Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control,2012,57(8):2106-2110. [32] MOULAY E, LECHAPPE V, BERNUAU E, et al. Robust Fixed-Time Stability: Application to Sliding-Mode Control[J]. IEEE Transactions on Automatic Control, 2022, 67(2): 1061-1066. |