湖南电力 ›› 2025, Vol. 45 ›› Issue (3): 103-111.doi: 10.3969/j.issn.1008-0198.2025.03.015

• 电网运行与控制 • 上一篇    下一篇

基于MTF-PSO-CNN的电能质量扰动分类方法

张大弛1, 杨士伟2, 丰顺强1, 姚狄1, 辛昊阔1, 肖白3   

  1. 1.国网吉林省电力有限公司经济技术研究院,吉林 长春 130000;
    2.国网冀北电力有限公司张家口供电公司,河北 张家口 075000;
    3.东北电力大学电气工程学院,吉林 吉林 132012
  • 收稿日期:2025-03-21 修回日期:2025-04-14 发布日期:2025-07-02
  • 通信作者: 肖白(1973),男,博士,教授,主要研究方向为电力系统规划与运行优化、电能质量分析、电价套餐设计。
  • 作者简介:张大弛(1990),男,硕士,工程师,主要研究方向为能源电力、配电网规划。
  • 基金资助:
    国家重点研发计划项目(2017YFB0902205); 吉林省产业创新专项基金项目(2019C058-7)

Power Quality Disturbance Classification Method Based on Markov Transition Field and Particle Swarm Optimization and Convolutional Neural Networks

ZHANG Dachi1, YANG Shiwei2, FENG Shunqiang1, YAO Di1, XiN Haokuo1, XiAO Bai3   

  1. 1. State Grid Jilin Electric Power Company Limited Economic and Technological Research institute,Changchun 130000, China;
    2. State Grid Zhangjiakou Power Supply Company, Zhangjiakou 075000, China;
    3. School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
  • Received:2025-03-21 Revised:2025-04-14 Published:2025-07-02

摘要: 针对新型电力系统的电能质量扰动(power quality disturbances,PQDs)复杂化和多样化的趋势,提出一种基于马尔可夫转换场(markov transition field,MTF)、卷积神经网络(convolutional neural network,CNN)和粒子群优化(particle swarm optimization,PSO)算法的电能质量扰动分类方法。首先,利用MTF将一维时序的电能质量扰动信号转换为二维的模态图像,为后续的数据特征提取创造有利条件。其次,使用CNN构建以图像模态数据为输入的电能质量扰动分类模型,并通过PSO算法对该模型中的参数进行优化,使学习率达到最优,避免出现欠拟合或过拟合现象。最后,利用优化参数后的分类模型得到电能质量扰动分类结果,并使用评价指标对分类模型的性能进行评估。仿真结果表明,所构建的分类模型能够很好地对电能质量扰动信号进行分类,具有更高的分类准确率和抗噪能力。

关键词: 电能质量扰动(PQDs), 马尔可夫转换场(MTF), 卷积神经网络(CNN), 粒子群优化算法(PSO)

Abstract: A power quality disturbance classification method based on markov transition field (MTF), convolutional neural network (CNN), and particle swarm optimization (PSO) algorithms is proposed to address the trend of complex and diverse power quality disturbances (PQDs) in new power systems. Firstly, MTF is used to convert one-dimensional time-series power quality disturbance signals into two-dimensional modal images, which creat favorable conditions for subsequent data feature extraction. Secondly, a power quality disturbance classification model based on image modal data is constructed using CNN, and the parameters in the model are optimized using PSO algorithm to achieve optimal learning rate and avoid the phenomenon of underfitting or overfitting. Finally, the optimized classification model is used to obtain the classification results of power quality disturbances, and its performance is evaluated using evaluation indicators. The simulation results show that the constructed classification model can effectively classify power quality disturbance signals, with higher classification accuracy and noise resistance.

Key words: power quality disturbance(PQDs), markov transition field(MTF), convolutional neural networks(CNN), particle swarm optimization algorithm(PSO)

中图分类号: