湖南电力 ›› 2025, Vol. 45 ›› Issue (5): 85-94.doi: 10.3969/j.issn.1008-0198.2025.05.012

• 电力人工智能与数字化 • 上一篇    下一篇

基于最大信息系数与BO-LSTNet的新型台区线损率预测方法

崔先迤1, 邓汉钧1, 余敏琪1, 许刚2, 任嘉浩2   

  1. 1.国网湖南省电力有限公司供电服务中心, 湖南 长沙 410004;
    2.华北电力大学, 北京 100096
  • 收稿日期:2025-06-23 修回日期:2025-08-25 发布日期:2025-11-11
  • 通信作者: 余敏琪(1994),女,硕士研究生,工程师,研究方向为营销计量。
  • 作者简介:崔先迤(1971),男,本科,高级工程师,研究方向为电力营销;许刚(1963),男,博士,教授,研究方向为智能信号处理。
  • 基金资助:
    国家电网有限公司总部科技项目(5400-202323233A-1-1-ZN)

A Novel Method of Line Loss Rate Prediction for Substation Areas Based on Maximum Information Coefficient and BO-LSTNet

CUI Xianyi1, DENG Hanjun1, YU Minqi1, XU Gang2, REN Jiahao2   

  1. 1. State Grid Hunan Electric Power Company Limited Power Supply Service Center, Changsha 410004, China;
    2. North China Electric Power University, Beijing 100096, China
  • Received:2025-06-23 Revised:2025-08-25 Published:2025-11-11

摘要: 针对传统台区线损预测方法存在无法灵活调节、不具备实时性、精度受气象条件影响等缺陷,提出一种基于最大信息系数与BO-LSTNet的新型台区的线损率预测方法。利用最大信息系数方法筛选台区气象信息,对输入变量筛选、清洗,最后将线损数据放入经过贝叶斯优化后的LSTNet模型中。仿真实验结果表明,相较过去的预测手段,该模型对新型台区线损率预测的适应性更高,解决了实际工程中线损预测精度较低的问题。

关键词: 最大信息系数, LSTNet, 关联性特征选择, 新型台区线损, 贝叶斯优化, 特征选择算法

Abstract: Aiming at the shortcomings of traditional methods for predicting line loss in substation areas, such as inability to adjust flexibly, lack of real-time performance, and accuracy affected by meteorological conditions, a new method for predicting line loss rate in substation areas based on maximum information coefficient and BO-LSTNet is proposed. The maximum information coefficient method is used to screen meteorological information in the substation area, and input variables are filtered and cleaned, and finally the line loss data is put into the LSTNet model after Bayesian optimization. The reliability is verified through simulation experiments, and the results show that compared with previous prediction methods, this model has higher adaptability to the new type of substation line loss rate prediction, and solves the problem of low accuracy in line loss prediction in practical engineering.

Key words: maximum information coefficient, LSTNet (long-and short-term time-series network), selection of correlation features, new type of substation line loss, Bayesian optimization, feature selection algorithm

中图分类号: