[1] 李豪磊,赵升,谢喜龙,等. 基于GWO-LSTM-TCN混合模型的锂电池荷电状态估计研究[J]. 电源技术,2024,48(11):2195-2200. [2] CHEN L P,BAO X Y,LOPES A M,et al.State of health estimation of lithium-ion batteries based on equivalent circuit model and data-driven method[J]. Journal of Energy Storage,2023,73:109195. [3] 林正廉,卢玉斌,陈亮,等. 基于TVFRLS和SVD-UKF的锂离子电池SOC估算[J]. 电池,2023,53(6):634-638. [4] LIU D L,WANG S L,FAN Y C,et al.A novel fuzzy-extended Kalman filter-ampere-hour(F-EKF-Ah)algorithm based on improved second-order PNGV model to estimate state of charge of lithium-ion batteries[J]. International Journal of Circuit Theory and Applications,2022,50(11):3811-3826. [5] 梁叶,蔡孟冶,姜岩峰,等. 基于修正安时积分法的锂电池荷电状态估算[J/OL]. 电源学报,2025:1-13.(2025-02-14)[2025-07-07]. https://kns.cnki.net/kcms/detail/12.1420.TM.20250214.1637.004.html. [6] 凌六一,张虎,张婷,等. 基于预测静置开路电压法的锂电池SOC估算[J/OL]. 电源学报,2024:1-10. (2024-04-26)[202?-07-07].https://kns?cnki.net/kcms/detail/12.1420.tm.20240425.1849.028.html. [7] 续远. 基于安时积分法与开路电压法估测电池SOC[J]. 新型工业化,2022,12(1):123-124,127. [8] KIM K H,OH K H,AHN H S,et al.Time-frequency domain deep convolutional neural network for Li-ion battery SoC estimation[J]. IEEE Transactions on Power Electronics,2024,39(1):125-134. [9] 刘轩,吕炎,高杰. 基于柔性压电纤维阵列的锂离子电池荷电状态声学表征[J]. 湖南电力,2025,45(1):29-36. [10] 张宇,李维嘉,吴铁洲. 基于BP-DCKF-LSTM的锂离子电池SOC估计[J]. 电源技术,2025,49(1):155-166. [11] 窦元运,张成知,封居强,等. 多因素影响下融合RNN和AUKF的矿用锂离子电池SOC估计[J]. 电源技术,2025,49(4):764-771. [12] LI P C,JU S X,BAI S X,et al.State of charge estimation for lithium-ion btteries based on physics-embedded neural network[J]. Journal of Power Sources,2025,640:236785. [13] 王建锋,张照震,李平. 基于加权自适应递推最小二乘法与EKF的锂离子电池SOC估计[J]. 汽车技术,2021(10):16-22. [14] AL-GABALAWY M,HOSNY N S,DAWSON J A,et al.State of charge estimation of a Li-ion battery based on extended Kalman filtering and sensor bias[J]. International Joural of Energy Research,2021,45(5):6708-6726. [15] JIANG C,WANG S L,WU B,et al.A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter[J]. Energy,2021,219:119603. [16] LI W H,FAN Y,RINGBECK F,et al.Electrochemical model-based state estimation for lithium-ion batteries with adaptive unscented Kalman filter[J]. Journal of Power Sources,2020,476:228534. [17] MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J]. Advances in Engineering Software,2014,69(3):46-61. [18] 邢作霞,丑佳明,郭珊珊,等. 基于混合神经网络的风电场测风数据插补方法的研究[J]. 太阳能学报,2025,46(5):458-464. [19] 王文,张晗,张擘,等. 基于GWO-RBF神经网络的车用燃料电池剩余使用寿命预测[J]. 科学技术与工程,2025,25(14):5897-5904. [20] 邢丽坤,詹明睿,郭敏,等. 基于FFMILS-MIUKF算法的锂电池SOC估计[J]. 电子测量技术,2022,45(16):53-60. [21] WANG S L,ZHANG S J,WEN S F,et al.An accurate state-of-charge estimation of lithium-ion batteries based on improved particle swarm optimization-adaptive square root cubature Kalman filter[J]. Journal of Power Sources,2024,624:235594. [22] 彭自然,王顺豪,肖伸平,等. 基于KAInformer的电动汽车动力电池SOC&SOH估算[J/OL]. 电工技术学报,2024:1-17.(2024-12-10)[2025-07-07]. https://doi.?org/10.19595/j.cnki.1000-6753.tces.241502. |