湖南电力 ›› 2025, Vol. 45 ›› Issue (6): 1-8.doi: 10.3969/j.issn.1008-0198.2025.06.001

• 专家专栏:考虑复杂安全边界的大规模新型电力系统规划建模与优化问题研究 •    下一篇

新能源高比例渗透下电价响应驱动的车网协同优化策略

向黎锋1, 张鸿伟2, 张晓东3, 陈颉1   

  1. 1.湘潭大学自动化与电子信息学院,湖南 湘潭 411105;
    2.广西电网有限责任公司百色供电局,广西 百色 533099;
    3.中国铁路广州局集团有限公司长沙机务段,湖南 长沙 410007
  • 收稿日期:2025-07-29 修回日期:2025-09-29 出版日期:2025-12-25 发布日期:2026-01-13
  • 通信作者: 陈颉(1992),男,讲师,研究方向为电力负荷预测、电动汽车负荷优化调度、充电设施规划管理等。
  • 作者简介:向黎锋(2003),男,本科,研究方向为电力负荷预测、电动汽车负荷优化调度、充电设施规划管理等。张鸿伟(2000),男,硕士研究生,研究方向为电力系统负荷优化调度。张晓东(2000),男,硕士研究生,研究方向为电动汽车负荷优化调度。
  • 基金资助:
    煤电清洁智能控制教育部重点实验室开放课题项目(CICCE202421); 湖南省教育厅教学改革项目(202401000571); 湘潭大学校级科研项目(22QDZ05)

The V2G Collaborative Optimization Strategy Driven by Electricity Prices Response Under the High Proportion of New Energy Penetration

XIANG Lifeng1, ZHANG Hongwei2, ZHANG Xiaodong3, CHEN Jie1   

  1. 1. College of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China;
    2. Baise Power Supply Bureau, Guangxi Power Grid Co., Ltd., Baise 533099, China;
    3. Changsha Locomotive Depot, China Railway Guangzhou Group Co., Ltd., Changsha 410007, China
  • Received:2025-07-29 Revised:2025-09-29 Online:2025-12-25 Published:2026-01-13

摘要: 针对车辆到电网(vehicle-to-grid,V2G)调度中,充电需求时间分布不确定性和高比例新能源渗透下出力不确定性导致电网负载难以平衡的问题,提出一种高比例新能源接入下电价响应驱动的车网协同优化策略。首先,构建一个面向高比例新能源接入场景的电价响应驱动车网协同优化模型,该模型通过调控电价引导V2G充电桩与电动汽车(electric vehicle, EV)的充放电行为,并以电网总成本最小化、电网负载峰谷差最小化和用户利益最大化为目标进行优化。其次,将第三代非支配遗传算法(non-dominated sorting genetic algorithm Ⅲ,NSGA-Ⅲ)与Wasserstein生成对抗网络(Wasserstein generative adversarial network,WGAN)融合,建立基于非支配排序和拥挤度距离选择精英解的奖励函数的动态调节算法,对模型进行求解。算例分析表明,相比于传统NSGA-Ⅲ算法,所提出的NSGA-Ⅲ+WGAN算法通过高效全局搜索与局部精调能力,能有效降低电网运行成本,提高电网的新能源消纳能力,平抑电网负载峰谷差,提高用户收益。

关键词: V2G充电桩, 节点电价调控, NSGA-Ⅲ算法, WGAN算法

Abstract: Aiming at the uncertainty of the time distribution of charging demand in vehicle-to-grid (V2G) scheduling and the uncertainty of output under the penetration of high proportion of new energy, which makes it difficult to balance the load of the grid, a V2G collaborative optimization strategy driven by electricity price response under a high proportion of new energy access is proposed. Firstly, a V2G collaborative optimization model driven by electricity price response for high proportion new energy access scenarios is constructed, which guides the charging and discharging behavior of V2G charging piles and electric vehicles by regulating electricity prices, and is optimized with multiple goals to minimize the total cost of the power grid, minimize the peak-to-valley difference of grid load, and maximize user benefits. Secondly, the non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ) algorithm is fused with the Wasserstein generative adversarial network(WGAN) to establish a dynamic adjustment algorithm with non-dominated sorting and crowding distance selection elite solution reward function for solving the model. Case analysis shows that compared with the traditional NSGA-Ⅲ algorithm, the proposed NSGA-Ⅲ WGAN algorithm can effectively reduce the operating cost of the power grid, improve the new energy consumption capacity of the power grid, stabilize the peak-to-valley difference of the load of the power grid, and improve the benefits of users through efficient global search and local fine-tuning capabilities.

Key words: V2G charging piles, node electricity price regulation, NSGA-Ⅲ algorithm, WGAN algorithm

中图分类号: