[1] GREY C P,HALL D S.Prospects for lithium-ion batteries and beyond:a 2030 vision[J]. Nature Communications,2020,11:6279. [2] TONG Z M,CHENG Z W,TONG S G.A review on the development of compressed air energy storage in China:technical and economic challenges to commercialization[J]. Renewable and Sustainable Energy Reviews,2021,135:110178. [3] LI Y,VILATHGAMUWA M,CHOI S S,et al.Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability[J]. Applied Energy,2020,260:114282. [4] 毛家乐. 基于健康因子挖掘的锂离子电池可解释性健康状态估计研究[D]. 杭州:浙江大学,2023. [5] LI Y,STORE D I,CHENG Y,et al.On the feature selection for battery state of health estimation based on charging-discharging profiles[J]. Journal of Energy Storage,2021,33:102122. [6] FENG X N,OUYANG M G,LIU X,et al.Thermal runaway mechanism of lithium ion battery for electric vehicles:a review[J]. Energy Storage Materials,2018,10:246-267. [7] FAN Y X,XIAN F,LI C R,et al.A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage,2020,32:101741. [8] LU J H,XIONG R,TIAN J R,et al.Deep learning to estimate lithium-ion battery state of health without additional degradation experiments[J]. Nature Communications,2023,14(1):2760. [9] YAYAN U,ARSLAN A T,YUCEL H.A novel method for SoH prediction of batteries based on stacked LSTM with quick charge data[J]. Applied Artificial Intelligence,2021,35(6):421-439. [10] 常泽宇,张之琦,张晓东,等. 基于数据驱动的动力电池健康状态评估平台[J]. 储能科学与技术,2022,11(6):1847-1853. [11] 张梦迪,刘洋,陈健,等. 基于ISSA-GPR的锂离子电池健康状态估计[J/OL]. 电源学报,1-13.(2023-12-19)[2024-12-26].http://kns.cnki.net/kcms/detail/12.1420.TM.20231219. 1345.010.html. [12] 周亚鹏,郭彪,王一纯. 基于PF-ARIMA的锂离子电池剩余寿命预测[J]. 电池工业,2022,26(1):19-22. [13] CADINI F,SBARUFATTI C,CANCELLIERE F,et al.State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters[J]. Applied Energy,2019,235:661-672. [14] YU J B.State of health prediction of lithium-ion batteries:multiscale logic regression and Gaussian process regression ensemble[J]. Reliability Engineering & System Safety,2018,174:82-95. [15] 朱振宇,高德欣. 基于混合网络的锂离子电池健康状态与剩余使用寿命联合估计方法[J]. 信息与控制,2024,53(1):120-128. [16] FEI Z C,ZHANG Z J,YANG F F,et al.A deep atention-assisted and memory-augmented temporal convolutional network based model for rapid lithium-ion battery remaining useful life predictions with limited data[J]. Journal of Energy Storage,2023,62:106903. [17] CHANG Z Y,TANG H L,ZHANG Z Q,et al.Prediction of remaining useful life and recycling node of lithium-ion batteries based on a hybrid method of LSTM and LightGBM[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2024,46(1):1-13. [18] WANG Z,LIU N,CHEN C,et al.Adaptive self-attention LSTM for RUL prediction of lithium-ion batteries[J]. Information Sciences,2023,635:398-413. [19] GOEBEL K,SAHA B,SAXENA A,et al.Prognostics in battery health management[J]. IEEE Instrumentation & Measurement Magazine,2008,11(4):33-40. [20] DOS REIS G,STRANGE C,YADAV M,et al.Lithium-ion battery data and where to find it[J]. Energy and AI,2021,5:100081. [21] 张涵. 基于多特征健康因子的锂离子电池SOH预测研究[D]. 太原:中北大学,2023. [22] 刘天宇. 基于小样本数据的锂离子电池健康状态评估方法研究[D]. 合肥:中国科学技术大学,2023. |