[1] 胡正伟,王志红,畅瑞鑫,等. 基于在线自组织增量学习的非侵入式负荷识别方法[J]. 工程科学与技术,2024,56(4):316-324. [2] YANG M,CHENG Z Y,LIU X Y.A non-intrusive load decomposition model based on multiple electrical parameters to point[J]. Energies,2024,17(17):4482. [3] 鲍光海,黄逸欣. 基于ResNeXt网络和迁移学习的非侵入式负荷监测[J]. 电力系统自动化,2023,47(13):110-120. [4] Wilhelm S,Kasbauer J.Exploiting smart meter power consumption measurements for human activity recognition (HAR)with a motif-detection-based non-intrusive load monitoring(NILM)approach[J]. Sensors,2021,21(23):8036. [5] 詹伟,查志勇,梁航函. 非侵入式负荷监测技术在客户服务中的应用研究[J]. 电力信息与通信技术,2019,17(11):46-50. [6] HART G W.Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE,1992,80(12):1870-1891. [7] ADAMS R P,MACKAY D J C. Bayesian online changepoint detection[EB/OL]. (2007-07-10)[2024-10-30]. https://arxiv.org/abs/0710.3742v1. [8] 屈雷涛. 基于事件检测的非侵入式负荷监测技术研究与应用[D]. 杭州:杭州电子科技大学,2023. [9] LIN Y S,HUNG S K,TSAI M S.Study on the Influence of voltage variations for non-intrusive load identifications[C]//2018 International Power Electronics Conference(IPEC-Niigata 2018-ECCE Asia). Niigata,Japan. IEEE,2018:1575-1579. [10] 智新振. 基于深度学习的非侵入式家庭用电负荷分解技术研究[D]. 杭州:浙江大学,2023. [11] GOPINATH R,KUMAR MUKESH.DeepEdge-NILM: a case study of non-intrusive load monitoring edge device in commercial building[J]. Energy and Buildings,2023,294:113226. [12] 孙一博. 基于GAF和RAN网络的非侵入式负荷识别方法[D]. 吉林:东北电力大学,2024. [13] 常喜强,崔浩,杨茂. 基于门控循环单元神经网络及负荷激活提取的非侵入式负荷监测算法[J]. 电气自动化,2023,45(4):40-43. [14] PICCIALLI V,SUDOSO A M.Improving non-intrusive load disaggregation through an attention-based deep neural network[J]. Energies,2021,14(4):847. [15] 史帅彬,张恒,邓世聪,等. 基于复合滑动窗的CUSUM暂态事件检测算法[J]. 电测与仪表,2019,56(17):13-18. [16] 冀慧杰,倪枫,刘姜,等. 基于灰色关联度和K-Means++的电子商务客户价值分类[J]. 计算机系统应用,2020,29(9):249-254. [17] SYAKUR M A,KHOTIMAH B K,ROCHMAN E S,et al.Integration K-means clustering method and elbow method for identification of the best customer profile cluster[J]. IOP conference series:materials science and engineering,2018,336:012017. [18] 林晨曦. 面向决策支持的多目标优化算法研究与实现[D]. 成都:电子科技大学,2022. [19] 侯林超,朱武,汤德清. 基于深度学习网络的非侵入式负荷分解方法[J]. 计算机仿真,2024,41(2):137-140,445. [20] ZHOU X X,FENG J R,LI Y.Non-intrusive load decomposition based on CNN-LSTM hybrid deep learning model[J]. Energy Reports,2021,7:5762-5771. [21] KHOA N D,DAT N Q,LING V Q,et al.Multi time series WA-LSTM-Adam for water level forecasting in center vietnam[J]. Asian Journal of Mathematics and Computer Research,2024,31(4):10-20. [22] 马丽莹,魏云冰. 一种变分模态分解与Adam优化的LSTM电价预测方法[J]. 智能计算机与应用,2022,12(12):142-152. [23] JIAN T,XIE Z K,WANG H P,etl. Persymmetric subspace GLRT-based detector for range-spread targets[J]. Digital Signal Processing,2022,129:103658. [24] IVANOVS J,YAMAZAKI K.A series expansion formula of the scale matrix with applications in CUSUM analysis[J]. Stochastic Processes and Their Applications,2024,70,104300. [25] 张兴伟,单周平,刘立洪,等. 基于贝叶斯决策的电池模型参数辨识方法[J]. 湖南电力,2024,44(4):20-26. |