[1] 路澍柘. 浅谈在碳中和环境下的燃煤电厂的未来趋势[J]. 科技经济市场, 2021(5): 139-140. [2] 推动能源结构转型构建清洁低碳安全高效能源体系——两会代表、委员为能源行业转型发展建言献策[J]. 中国煤炭工业, 2021(4): 30-31. [3] 赵兵,景杰. “碳达峰、碳中和”目标下火力发电行业的转型与发展[J]. 节能与环保, 2021(5): 32-33. [4] 李琳, 张芬芬, 闫东海,等. 330 MW燃煤锅炉蒸汽超温分析研究[J]. 山东电力高等专科学校学报, 2020, 23(6): 59-62. [5] 李胜男. 灵活性运行下燃煤发电机组热力系统建模研究[D].武汉: 华中科技大学, 2020. [6] 金志远, 李胜男, 谭鹏,等. 基于长短时记忆神经网络的锅炉多参数协同预测模型[J]. 热力发电, 2021, 50(5): 120-126. [7] 赵佳鹏, 韩月皎, 翟永杰. 基于LS-SVM的再热汽温趋势预测与控制优化[J]. 计算机仿真, 2016, 33(5): 145-147,170. [8] LiuZ, Jiang S, Yang H, et al. The prediction research of steam reheating temperature in power plants based on LS-SVM[J]. Proc SPIE, 2013: 8919. [9] 华菁云. 高维时序数据下考虑时延的火电再热汽温预测[C]//用电与能效专题讲座暨智能用电及能效管理技术研讨会, 2019, 南京, 中国. 中国电力科学研究院:北京市海淀区太极计算机培训中心, 2019: 6. [10] Gui N, Lou J, Qiu Z, at el. Temporal Feature Selection for Multi-Step Ahead Reheater Temperature Prediction[J]. Processes, 2019, 7(7): 473. [11] Rosenblatt F. The perceptron: a probabilistic model for information storage and organization inthe brain[J]. Psychological Review, 1958, 65: 386-408. [12] Atkinson P M,Tatnall A. Introduction neural networks in remote sensing[J]. International Journal of Remote Sensing, 1997, 18(4): 699-709. [13] Ammar H E,Swellam W, Mohamed A E, et al. Modeling of solar energy systems using artificial neural network: A comprehensive review[J]. Solar Energy, 2019, 180: 622-639. [14] Ma S,Sigal L, Sclaroff S. Learning Activity Progression in LSTMs for Activity Detection and Early Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, Beijing, China. IEEE, 2016: 1942-1950. [15] Kingma D, Ba J. Adam. A Method for Stochastic Optimization[C]//3rd International Conference on Learning Representations, 2015, San Diego, Chile. Cornell University, 2015: 1-15. |