[1] 王道累,张世恒,袁斌霞,等. 基于改进YOLOv5的轻量化玻璃绝缘子自爆缺陷检测研究[J]. 高电压技术,2023,49(10):4382-4390. [2] GOUDA O E,DARWISH M M F,MAHMOUD K,et al. Pollution severity monitoring of high voltage transmission line insulators using wireless device based on leakage current bursts[J]. IEEE Access,2022,10:53713-53723. [3] 熊炜,黄玉谦,孟圣哲. 基于改进YOLOv8算法的绝缘子缺陷检测模型[J]. 电子测量技术,2024,47(12):132-139. [4] 李鹏,宿雲龙,宁昊,等. 基于嵌入式YOLO网络的电力绝缘子自爆缺陷检测[J/OL]. 电工技术学报,2025:1-13. (2025-02-18)[2025-04-10]. https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.242110. [5] WANG S S,ZOU X Y,ZHU W,et al.Insulator defects detection for aerial photography of the power grid using you only look once algorithm[J]. Journal of Electrical Engineering & Technology,2023,18(4):3287-3300. [6] ZHAI Y J,WANG D,ZHANG M L,et al.Fault detection of insulator based on saliency and adaptive morphology[J]. Multimedia Tools and Applications,2017,76(9):12051-12064. [7] 廖丽瑛,刘洪. 基于改进YOLOv8的绝缘子自爆缺陷检测[J]. 电子测量技术,2024,47(18):138-144. [8] 李运堂,张坤,李恒杰,等. 基于改进YOLOv5s网络的绝缘子缺陷检测[J]. 浙江大学学报,2024,58(12):2469-2478,2499. [9] 姜香菊,王瑞彤,马彦鸿. 基于轻量级改进RT-DETR边缘部署算法的绝缘子缺陷检测[J]. 电工技术学报,2025,40(3):842-854. [10] 郑含博,胡思佳,梁炎燊,等. 基于YOLO-2MCS的输电线路走廊隐患目标检测方法[J]. 电工技术学报,2024,39(13):4164-4175. [11] MA Y P,LI Q W,CHU L L,et al.Real-time detection and spatial localization of insulators for UAV inspection based on binocular stereo vision[J]. Remote Sensing,2021,13(2):230. [12] WU Q G,AN J B,LIN B.A texture segmentation algorithm based on PCA and global minimization active contour model for aerial insulator images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5(5):1509-1518. [13] ZHANG G N,LIU Z G,HAN Y.Automatic recognition for catenary insulators of high-speed railway based on contourlet transform and Chan-Vese model[J]. Optik,2016,127(1):215-221. [14] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas,NV,USA. IEEE,2016:779-788. [15] WANG J Y,LI Y N,CHEN W X.Detection of glass insulators using deep neural networks based on optical imaging[J]. Remote Sensing,2022,14(20):5153. [16] JIANG H,QIU X J,CHEN J,et al.Insulator fault detection in aerial images based on ensemble learning with multi-level perception[J]. IEEE Access,2019,7:61797-61810. [17] ZHOU M,LI B,WANG J,et al.Fault detection method of glass insulator aerial image based on the improved YOLOv5[J]. IEEE Transactions on Instrumentation and Measurement,2023,72:3269099. [18] HAO K,CHEN G K,ZHAO L,et al.An insulator defect detection model in aerial images based on multiscale feature pyramid network[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:3200861. [19] ZHANG T,ZHANG Y N,XIN M,et al.A light-weight network for small insulator and defect detection using UAV imaging based on improved YOLOv5[J]. Sensors,2023,23(11):5249. [20] YI W G,MA S W,LI R H.Insulator and defect detection model based on improved YOLO-S[J]. IEEE Access,2023,11:93215-93226. [21] CHENG Y B.Detection of power line insulator based on enhanced YOLO Model[C]//2022 IEEE Asia-Pacific Conference on Image Processing,Electronics and Computers(IPEC). Dalian,China. IEEE,2022:626-632. [22] TIAN X X,ZHANG M T,LU G Y.Power line insulator defect detection using CNN with dense connectivity and efficient attention mechanism[J]. Multimedia Tools and Applications,2024,83(10):28305-28322. [23] XIN R,CHEN X,WU J Y,et al.Insulator umbrella disc shedding detection in foggy weather[J]. Sensors,2022,22(13):4871. [24] GAO G L,CAO J,BAO C,et al.A novel transformer-based attention network for image dehazing[J]. Sensors,2022,22(9):3428. |