[1] HAN Y F,DAI Y,LIU L,et al.Transformer defects detection method based on visible and infrared fusion images[C]//2021 International Conference on Electrical Materials and Power Equipment(ICEMPE). Chongqing,China. IEEE,2021:1-4. [2] 卢彬,朱海峰,谷振富,等. 基于红外图像的避雷器故障检测方法[J]. 红外,2018,39(1):19. [3] 寇鸽子. 携红外相机的无人机架空导线图像识别与显示系统[D]. 西安:西安科技大学,2022. [4] 胡泰山,刘浩,刘刚,等. 基于改进YOLOv3的避雷器红外图像故障检测方法[J]. 红外技术,2023,45(11):1256-1261. [5] HAN S,YANG F,JIANG H,et al.A smart thermography camera and application in the diagnosis of electrical equipment[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:5012108. [6] 李博,刘会斌,王胜辉,等. 基于GANR-UNet的绝缘子红外图像分割及低零值故障诊断研究[J/OL]. 华北电力大学学报(自然科学版),1-11.(2024-01-16)[2025-03-03].http://kns.cnki.net/kcms/detail/13.1212.tm.20240115.1750.002.html. [7] XU C,LI Q W,JIANG X B,et al.Dual-space graph-based interaction network for RGB-thermal semantic segmentation in electric power scene[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022,33(4):1577-1592. [8] LI B,WANG T,ZHAI Y J,et al.RFIENet:RGB-thermal feature interactive enhancement network for semantic segmentation of insulator in backlight scenes[J]. Measurement,2022,205:112177. [9] 郭志刚,朱林林,吴俊敏,等. 基于改进机器视觉算法的电力设备红外检测[J]. 电子设计工程,2023,31(17):178-181,186. [10] 刘赫,赵天成,刘俊博,等. 基于深度残差UNet网络的电气设备红外图像分割方法[J]. 红外技术,2022,44(12):1351-1357. [11] MA J L,QIAN K,ZHANG X B,et al.Weakly supervised instance segmentation of electrical equipment based on RGB-T automatic annotation[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(12):9720-9731. [12] SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [13] 王蕾,朱芬芬,李金萍,等. 融合注意力门控机制的大场景点云语义分割[J]. 激光与红外,2023,53(11):1785-1792. [14] 亢洁,王勍,刘文波,等. 融合CAT-BiFPN与注意力机制的航拍绝缘子多缺陷检测网络[J]. 高电压技术,20,49(8):3361-3376. [15] 刘敏,周国亮,王红旭,等. 基于稀疏重构注意力机制的绝缘子缺陷检测方法[J]. 广东电力,2024,37(5):104-111. [16] 伍艺佳,华雄,王丽蓉,等. 基于注意力机制学习的变电设备缺陷检测方法[J]. 计算机与现代化,2021(2):7-12,17. [17] GUO M,XU T,LIU J,et al.Attention mechanisms in computer vision:A survey[J]. Computational Visual Media,2022,8(3):331-368. [18] ETHEM ALPAYDIN.Multilayer perceptrons[J]. Introduction to Machine Learning,2014:267-316. [19] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham:Springer International Publishing,2015:234-241. [20] ZHOU Z W,SIDDIQUEE M M R,TAJBAKHSH N,et al. UNet++:a nested U-Net architecture for medical image segmentation[J]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support,2018,11045:3-11. [21] 张志超,左雷鹏,邹捷,等. 基于多模态图像信息的变电设备红外分割方法[J]. 红外技术,2023,45(11):1198-1206. [22] CHEN S H,CHEN Z Z,XU X G,et al.Nv-Net:Efficient infrared image segmentation with convolutional neural networks in the low illumination environment[J]. Infrared Physics & Technology,2020,105:103184. |