湖南电力 ›› 2025, Vol. 45 ›› Issue (5): 133-140.doi: 10.3969/j.issn.1008-0198.2025.05.018

• 电力工程建设与应用 • 上一篇    下一篇

基于IEC模块和双流卷积神经网络的钻孔立杆机钻机轴承故障诊断方法

杨淼1, 殷鹏1, 曾小军2, 陈明3, 杨文4, 贺继林5   

  1. 1.国网湖南省电力有限公司电力科学研究院, 湖南 长沙 410208;
    2.国网湖南省电力有限公司衡阳供电分公司, 湖南 衡阳 421001;
    3.湖南省湘电试验研究院有限公司, 湖南 长沙 410208;
    4.国网湖南省电力有限公司邵阳分供电公司, 湖南 邵阳 422000;
    5.中南大学机电工程学院, 湖南 长沙 410012
  • 收稿日期:2025-06-30 修回日期:2025-08-13 发布日期:2025-11-11
  • 作者简介:杨淼(1977),男,湖南邵东人,高级工程师,研究方向为输配电带电作业及智能化施工技术。
  • 基金资助:
    国网湖南省电力有限公司科技项目(5216A5220024); 中南大学校企联合项目(10100-718010265)

Research on Bearing Fault Diagnosis Method for Drilling Pole Machine Based on IEC Module, TSCNN

YANG Miao1, YIN Peng1, ZENG Xiaojun2, CHEN Ming3, YANG Wen4, HE Jilin5   

  1. 1. State Grid Hunan Electric Power Company Limited Research Institute, Changsha 410208, China;
    2. State Grid Hengyang Power Supply Company, Hengyang 421001, China;
    3. Hunan Xiangdian Test and Research Institute Co., Ltd., Changsha 410208, China;
    4. State Grid Shaoyang Power Supply Company, Shaoyang 422000, China;
    5. School of Mechanical and Electrical Engineering, Central South University, Changsha 410012, China
  • Received:2025-06-30 Revised:2025-08-13 Published:2025-11-11

摘要: 为实现有效的轴承故障诊断,提出一种基于集成InceptionV2、高效通道注意力(efficient channel attention,ECA)、卷积块注意力模块(convolutional block attention module,CBAM)和双流卷积神经网络(two-stream convolutional neural network,TSCNN)的轴承故障诊断方法。首先,利用快速傅里叶变换(fast fourier transform,FFT)和连续小波变换(continuous wavelet transform,CWT)将原始振动信号转换成一维数据和二维时频图像。随后,构建TSCNN融合模型,将得到的小波时频图像和FFT谱作为输入,利用InceptionV2和ECANet-CBAM改进模块提取时频图像的空间特征,将得到的双层特征信息融合到Softmax层中完成故障分类。最后,基于滚动轴承故障标准数据集进行对比分析,结果表明,所提出故障诊断方法诊断准确率更高。

关键词: 钻孔立杆机, 轴承, 故障诊断, IEC模块, TSCNN

Abstract: To achieve efficient bearing fault diagnosis, a novel method based on the IEC module (integrating InceptionV2, Efficient Channel Attention, and Convolutional Block Attention Module) and a Two-stream Convolutional Neural Network(TSCNN) is proposed. First, raw vibration signals are converted into one-dimensional data and two-dimensional time-frequency images using Fast Fourier Transform(FFT) and Continuous Wavelet Transform(CWT). Subsequently, an improved TSCNN fusion model is constructed, and the obtained wavelet time-frequency images and FFT spectra are used as inputs to extract the spatial features of the time-frequency images by using InceptionV2 and ECANet-CBAM improvement module, and the resulting dual-layer feature information is fused into the Softmax layer to accomplish fault classification. Finally, comparative analysis based on a standard rolling bearing fault data set demonstrates that the proposed IEC-TSCNN method achieves superior diagnostic accuracy.

Key words: drilling pole machine, bearing, fault diagnosis, IEC module, TSCNN(two-stream convolutional neural network)

中图分类号: