湖南电力 ›› 2025, Vol. 45 ›› Issue (6): 68-75.doi: 10.3969/j.issn.1008-0198.2025.06.009

• 源网协调与能源转换利用 • 上一篇    下一篇

用于复杂煤灰熔融特性预测的加权耦合神经网络模型

詹子仪, 黄延凯, 喻鑫, 周子健, 于敦喜, 徐明厚   

  1. 华中科技大学煤燃烧与低碳利用全国重点实验室,湖北 武汉 430074
  • 收稿日期:2025-09-26 修回日期:2025-09-30 出版日期:2025-12-25 发布日期:2026-01-13
  • 通信作者: 于敦喜(1975),男,教授,博士生导师,主要从事固体燃料高效清洁利用研究。
  • 基金资助:
    国家重点研发计划(2023YFB4102701); 国家自然科学基金项目(52476115); 新疆维吾尔自治区重大科技专项(2024A01005-2); 湖北省中央引导地方科技发展资金(2024CSA088)

Research on Weighted Coupled Neural Network Model for Prediction of Fusibility of Coal Ash with Complex Composition

ZHAN Ziyi, HUANG Yankai, YU Xin, ZHOU Zijian, YU Dunxi, XU Minghou   

  1. State Key Laboratory of Coal Combustion and Low-Carbon Utilization, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2025-09-26 Revised:2025-09-30 Online:2025-12-25 Published:2026-01-13

摘要: 针对常规神经网络预测复杂煤灰熔融特性存在较大误差的问题,提出一种新型加权耦合神经网络(weight coupled neural network,WCN)预测模型。其特征在于,基于煤灰Si-Al-Ca-Fe体系竞争反应机理,对传统前馈神经网络进行改进,将煤灰硅铝比(silica-to-alumina ratio,S/A)和钙铁比(calcium-to-iron ratio,C/F)作为特征项输入权重网络,再与组分网络的输出耦合,使神经网络具有灵活可调的预测权重,从而提高模型适应性和预测精度。对比煤灰软化温度预测结果表明,WCN模型对测试集预测的最大误差低于60 ℃,优于国家标准(GB/T 219—2008)对煤灰熔融特性复现性的要求(80 ℃);相比常规极端梯度提升算法和反向传播神经网络模型,WCN模型对复杂高碱煤(准东煤)灰的预测精度分别提高了32.8%和83%。研究表明,WCN模型在煤灰适应性和预测精度等方面均有较大提升,具有较好应用价值。

关键词: 煤灰, 熔融特性, 软化温度, 神经网络, 模型

Abstract: To address the significant errors associated with conventional neural network models in predicting the fusibility of coal ash with complex composition, a novel weighted coupled neural network model (WCN) is proposed. It is particularly characterized by the modification of the traditional feedforward neural network based on the competitive reaction mechanisms of the coal ash Si-Al-Ca-Fe systems. Specifically, the silica-to-alumina ratio (S/A) and calcium-to-iron ratio (C/F) of coal ash are incorporated as feature items into a weighted network, whose outputs are then coupled with those of the component network, enabling the neural network to have flexible and adjustable prediction weights, thereby enhancing the model's adaptability and prediction accuracy. Comparison of the prediction results of coal ash softening temperature by different models demonstrates that the maximum errors of the WCN model in the prediction of the test set is below 60 ℃, outperforming the reproducibility requirement (80 ℃) for coal ash fusion characteristics in the Chinese National Standard(GB/T 219—2008). Furthermore, compared to the conventional eXtreme Gradient Boosting(XGBOOST) and back propagation neural network(BPNN) models, the WCN model improves prediction accuracy for complex high-alkali coal(e.g., Zhundong coal) ash by 32.8% and 83%, respectively. The study shows that the WCN model achieves significant improvements in both coal ash adaptability and prediction accuracy, demonstrating considerable application value.

Key words: coal ash, fusibility, softening temperature, neural network, model

中图分类号: